Fibers and Polymers

, Volume 14, Issue 8, pp 1301–1310 | Cite as

Compressive viscoelastic properties of softwood kraft lignin-based flexible polyurethane foams

  • Heonyoung Jeong
  • Jongshin Park
  • Sunghoon Kim
  • Jungmin Lee
  • Narang Ahn


Softwood kraft lignin (SKL)-based water-blown flexible polyurethane foams were prepared using SKL as a crosslinking agent and a hard segment polyol. Polyethylene glycol (PEG) as a soft segment diol and 2,4-toluene diisocyanate (TDI) were used. While increasing hard segment content caused the increase in crosslink density in foams, the foams became more and more viscous with increasing hard segment content due to the distinctive phase heterogeneity in foams. In this case, the contributiveness of the filler-like behaviors of separated hard segments always overtook the crosslinking effects derived from SKL in terms of overall viscoelasticity, thus the resultant viscometric properties such as tanδ max and hysteresis loss increased as hard segment content increased. Furthermore, increasing M n,PEG caused the severer microphase separation and intensified the filler effects in foams, thus the foams became more viscous with increasing M n,PEG. The 25 % and 65 % CFD values and Young’s moduli of foams increased with increasing hard segment content due to the increase in crosslink density for foams, and the properties also increased with increasing foam density. Most of foams showed the support factors in the range of 2–3, which are suitable values for cushioning use. Even though the microscopic deformation behaviors in foams are irrelevant to foam density, the cyclic compressive tests showed that the higher foam density possess the better shape recovery performances.


Lignin Polyurethane foam Viscoelasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Boerjan, J. Ralph, and M. Baucher, Annu. Rev. Plant Biol., 54, 519 (2003).CrossRefGoogle Scholar
  2. 2.
    J. H. Lora and W. G. Glasser, J. Polym. Environ., 10, 39 (2002).CrossRefGoogle Scholar
  3. 3.
    G. Gellerstedt and E.-L. Lindfors, Holzforschung, 38, 151 (1984).CrossRefGoogle Scholar
  4. 4.
    P. M. Froass, A. J. Ragauskas, and J. E. Jiang, Holzforschung, 52, 385 (1998).CrossRefGoogle Scholar
  5. 5.
    F. S. Chakar and A. J. Ragauskas, Ind. Crop. Prod., 20, 131 (2004).CrossRefGoogle Scholar
  6. 6.
    N.-E. El Mansouri and J. Salvadó, Ind. Crop. Prod., 26, 116 (2007).CrossRefGoogle Scholar
  7. 7.
    H. Cheradame, M. Detoisien, A. Gandini, F. Pla, and G. Roux, Br. Polymer J., 21, 269 (1989).CrossRefGoogle Scholar
  8. 8.
    D. V. Evtuguin, J. P. Andreolety, and A. Gandini, Eur. Polym. J., 34, 1163 (1998).CrossRefGoogle Scholar
  9. 9.
    S. Hirose, K. Kobashigawa, Y. Izuta, and H. Hatakeyama, Polymer International, 47, 247 (1998).CrossRefGoogle Scholar
  10. 10.
    C. Ciobanu, M. Ungureanu, L. Ignat, D. Ungureanu, and V. I. Popa, Ind. Crop. Prod., 20, 231 (2004).CrossRefGoogle Scholar
  11. 11.
    T. Hatakeyama, Y. Izuta, S. Hirose, and H. Hatakeyama, Polymer, 43, 1177 (2002).CrossRefGoogle Scholar
  12. 12.
    E. A. B. d. Silva, M. Zabkova, J. D. Araújo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues, Chem. Eng. Res. Des., 87, 1276 (2009).CrossRefGoogle Scholar
  13. 13.
    H. Nadji, C. Bruzzèse, M. N. Belgacem, A. Benaboura, and A. Gandini, Macromol. Mater. Eng., 290, 1009 (2005).CrossRefGoogle Scholar
  14. 14.
    H. Hatakeyama, A. Nakayachi, and T. Hatakeyama, Compos. Part A: Appl. S., 36, 698 (2005).CrossRefGoogle Scholar
  15. 15.
    C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, and M. N. Belgacem, Ind. Eng. Chem. Res., 48, 2583 (2009).CrossRefGoogle Scholar
  16. 16.
    Z.-M. Liu, F. Yu, G.-Z. Fang, and H.-J. Yang, J. Forest Res., 20, 161 (2009).CrossRefGoogle Scholar
  17. 17.
    W. D. Oliveira and W. G. Glasser, Polymer, 35, 1977 (1994).CrossRefGoogle Scholar
  18. 18.
    S. Sarkar and B. Adhikari, Eur. Polym. J., 37, 1391 (2001).CrossRefGoogle Scholar
  19. 19.
    S. Chahar, M. G. Dastidar, V. Choudhary, and D. K. Sharma, J. Adhes. Sci. Technol., 18, 169 (2004).CrossRefGoogle Scholar
  20. 20.
    M. J. Elwell, A. J. Ryan, H. J. M. Grünbauer, and H. C. Van Lieshout, Polymer, 37, 1353 (1996).CrossRefGoogle Scholar
  21. 21.
    D. Eaves, “Handbook of Polymer Foams”, Rapra Technology, 2004.Google Scholar
  22. 22.
    J. Pellinen and M. Salkinoja-Salonen, J. Chromatogr. A, 328, 299 (1985).CrossRefGoogle Scholar
  23. 23.
    A. Reimann, R. Mörck, H. Yoshida, H. Hatakeyama, and K. P. Kringstad, J. Appl. Polym. Sci., 41, 39 (1990).CrossRefGoogle Scholar
  24. 24.
    D. V. Dounis and G. L. Wilkes, Polymer, 38, 2819 (1997).CrossRefGoogle Scholar
  25. 25.
    R. W. Thring, P. Ni, and S. M. Aharoni, Int. J. Polym. Mater., 53, 507 (2004).CrossRefGoogle Scholar
  26. 26.
    A. H. Landrock, “Handbook of Plastic Foams: Types, Properties, Manufacture, and Applications”, Noyes Publications, 1995.Google Scholar
  27. 27.
    C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, M. C. Brochier-Salon, W. Thielemans, and M. N. Belgacem, J. Appl. Polym. Sci., 109, 3008 (2008).CrossRefGoogle Scholar
  28. 28.
    O. Faix, S. Argyropoulos Dimitris, D. Robert, and V. Neirinck, “Determination of Hydroxyl Groups in Lignins Evaluation of 1H-, 13C-, 31P-NMR, FTIR and Wet Chemical Methods”, 1994.Google Scholar
  29. 29.
    W. Thielemans and R. P. Wool, Biomacromolecules, 6, 1895 (2005).CrossRefGoogle Scholar
  30. 30.
    ASTM D 3574-11, “ASTM D 3574-11”, ASTM International, West Conshohocken, PA, 2011.Google Scholar
  31. 31.
    J. C. Moreland, G. L. Wilkes, and R. B. Turner, J. Appl. Polym. Sci., 52, 549 (1994).CrossRefGoogle Scholar
  32. 32.
    S. W. White, S. K. Kim, A. K. Bajaj, P. Davies, D. K. Showers, and P. E. Liedtke, Nonlinear Dynamics, 22, 281 (2000).CrossRefGoogle Scholar
  33. 33.
    M. Baumgaertel and H. H. Winter, Rheologica Acta, 28, 511 (1989).CrossRefGoogle Scholar
  34. 34.
    H. Yoshida, R. Mörck, K. P. Kringstad, and H. Hatakeyama, J. Appl. Polym. Sci., 34, 1187 (1987).CrossRefGoogle Scholar
  35. 35.
    L. W. Hill, Progress in Organic Coatings, 31, 235 (1997).CrossRefGoogle Scholar
  36. 36.
    R. J. Zdrahala, R. M. Gerkin, S. L. Hager, and F. E. Critchfield, J. Appl. Polym. Sci., 24, 2041 (1979).CrossRefGoogle Scholar
  37. 37.
    C. B. Wang and S. L. Cooper, Macromolecules, 16, 775 (1983).CrossRefGoogle Scholar
  38. 38.
    J. P. Armistead, G. L. Wilkes, and R. B. Turner, J. Appl. Polym. Sci., 35, 601 (1988).CrossRefGoogle Scholar
  39. 39.
    K. Nakamae, T. Nishino, S. Asaoka, and Sudaryanto, Int. J. Adhes. Adhes., 16, 233 (1996).CrossRefGoogle Scholar
  40. 40.
    Z. S. Petrovi and J. Ferguson, Prog. Polym. Sci., 16, 695 (1991).CrossRefGoogle Scholar
  41. 41.
    H. A. Barnes, Rheology Reviews, 1 (2003).Google Scholar
  42. 42.
    Z. S. Petrovi and I. Javni, J. Polym. Sci. Pol. Phys., 27, 545 (1989).CrossRefGoogle Scholar
  43. 43.
    S. Velankar and S. L. Cooper, Macromolecules, 31, 9181 (1998).CrossRefGoogle Scholar
  44. 44.
    G. A. Campbell, J. Appl. Polym. Sci., 24, 709 (1979).CrossRefGoogle Scholar
  45. 45.
    R. E. Jones and G. Fesman, J. Cell. Plast., 1, 200 (1965).CrossRefGoogle Scholar
  46. 46.
    H. Yoshida, R. Mörck, K. P. Kringstad, and H. Hatakeyama, J. Appl. Polym. Sci., 40, 1819 (1990).CrossRefGoogle Scholar
  47. 47.
    M. Ashby and R. Medalist, Metall. Mater. Trans. A, 14, 1755 (1983).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Heonyoung Jeong
    • 1
  • Jongshin Park
    • 1
  • Sunghoon Kim
    • 1
  • Jungmin Lee
    • 1
  • Narang Ahn
    • 1
  1. 1.Department of Biosystems & Biomaterial Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations