Skip to main content
Log in

Fabrication of oxidized sodium carboxymethylcellulose from viscose fibers and their viscosity behaviors

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The oxidized sodium carboxymethylcellulose (O-CMC) fibers have been successfully synthesized via the oxidation-etherification method. Subsequently, the O-CMC fibers are characterized by Fourier transform infrared (FT-IR), 13C nuclear magnetic resonance (13C-NMR) and X-ray diffraction (XRD). In addition, the viscosity behaviors of the O-CMC aqueous solution have been investigated at five temperatures (25, 30, 40, 50 and 60 °C), six concentrations (30, 35, 40, 45, 50 and 60 kg/m3) and four shear rates (6, 12, 30 and 60 rpm). The results show that the viscosity of the O-CMC aqueous solution increases with increasing concentrations and decreases with increasing temperature. The viscosity of the O-CMC aqueous solution is found to exhibit a dilatant behavior. The dissolution rate in water of the O-CMC fibers is faster than that of the carboxymethylcellulose (CMC) fibers. It could be used as novel absorbable hemostatic fibers in surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hasan and N. Arslan, Carbohyd. Polym., 54, 73 (2003).

    Article  Google Scholar 

  2. T. Heinze and K. Pfeiffer, Die Angewandte Makromolekulare Chemie, 266, 37 (1999).

    Article  CAS  Google Scholar 

  3. B. de Douglas and B. G. Odilio, Thermochim. Acta, 494, 115 (2009).

    Article  Google Scholar 

  4. R. J. Hunter, C. Neagoe, H. A. Jarvelainen, C. R. Martin, K. O. Lindros, W. A. Linke, and V. R. Preedy, J. Nutr., 133, 1154 (2003).

    CAS  Google Scholar 

  5. B. E. Randy, M. Eric, K. P. Anna, and S. G. Erin, Am. J. Vet. Res., 65, 637 (2004).

    Article  Google Scholar 

  6. E. R. Kathleen, E. S. Herbert, R. Norma, T. Melvin, K. William, and S. Gere, Fertil Steril, 73, 831 (2000).

    Article  Google Scholar 

  7. E. C. Borrazzo, M. F. Belmont, D. Boffa, and D. L. Fowler, Hernia, 8, 108 (2004).

    Article  CAS  Google Scholar 

  8. E. Suphan, Y. Serdar, T. Muhyittin, E. Baki, S. Nevin, B. Huriye, D. Ahmet, C. Ali, and S. Haluk, Dis. Colon. Rectum., 46, 529 (2003).

    Article  Google Scholar 

  9. A. Gokhan, V. Mehmet, T. Asuman, E. Bulent, and K. Eksal, J. Reconstr. Microsurg, 19, 29 (2003).

    Article  Google Scholar 

  10. K. R. Charlotte and C. S. Harry, Am. J. Surg., 169, 154 (1995).

    Article  Google Scholar 

  11. M. Hayashi, H. Sekiya, K. Takatoku, Y. Kariya, and Y. Hoshino, Knee Surg Sport Tr A, 12, 545 (2004).

    Article  CAS  Google Scholar 

  12. H. Gu, J. He, Y. Huang, and Z. Guo, Fiber. Polym., 13, 748 (2012).

    Article  CAS  Google Scholar 

  13. V. Marianna, K. Taina, R. Monika, J. Jaroslaw, C. Danuta, G. Stina, S. Matti, E. C. Kristina, and N. Pertti, Cellulose, 15, 671 (2008).

    Article  Google Scholar 

  14. O. Aytekin, M. R. Erick, M. Charles, A. T. Jean, and S. G. Inderbir, Am. J. Roentgenol., 172, 1481 (1999).

    Article  Google Scholar 

  15. S. G. Hardeep, H. Monica, and M. R. Cristina, Cereal Chem., 80, 750 (2003).

    Article  Google Scholar 

  16. Y. Fevzi, T. Hasan, and N. Arslan, J. Food Eng., 81, 187 (2007).

    Article  Google Scholar 

  17. F. Kar and N. Arslan, Carbohyd. Polym., 40, 277 (1999).

    Article  CAS  Google Scholar 

  18. E. V. Andriana, K. P. Tunc, K. P. Sandeep, and R. D. Christopher, J. Food Process Eng., 25, 41 (2002).

    Article  Google Scholar 

  19. C. Barba, D. Montane, X. Farriol, D. Jacques, and R. Marguerite, Cellulose, 9, 327 (2002).

    Article  CAS  Google Scholar 

  20. X. H. Yang and W. L. Zhu, Cellulose, 14, 409 (2007).

    Article  CAS  Google Scholar 

  21. M. Zhang, J. Zhang, and S. Xia, US 7, 262, 181 (2007).

    Google Scholar 

  22. V. Pushpamalar, S. J. Langford, M. Ahmad, and Y. Y. Lim, Carbohyd. Polym., 64, 312 (2006).

    Article  CAS  Google Scholar 

  23. K. Vijay and Y. Tianrun, Carbohyd. Polym., 48, 403 (2002).

    Article  Google Scholar 

  24. D. A. Silva, C. M. Regina, J. P. A. Feitosa, C. F. Ana, J. S. Maciel, and H. C. B. Paula, Carbohyd. Polym., 58, 163 (2004).

    Article  CAS  Google Scholar 

  25. C. M. Regina, H. Frank, and M. B. Peter, Polym. Int., 45, 27 (1998).

    Article  Google Scholar 

  26. H. N. Cheng, M. Takai, and E. A. Ekong, Macromol. Symp., 140, 145 (1999).

    Article  CAS  Google Scholar 

  27. K. A. Coia and K. R. Stauffer, J. Food Eng., 52, 166 (1987).

    CAS  Google Scholar 

  28. S. D. Holdsworth, J. Texture Stud., 2, 393 (1971).

    Article  Google Scholar 

  29. S. L. Young and J. W. Norman, Rheol. Acta, 42, 199 (2003).

    Google Scholar 

  30. S. Dapia, C. A. Tovar, V. Santos, and J. C. Parajo, Food Hydrocolloid., 19, 313 (2005).

    Article  CAS  Google Scholar 

  31. D. C. Valenza, L. Merle, G. Mocanu, L. Picton, and G. Muller, Carbohyd. Polym., 60, 87 (2005).

    Article  Google Scholar 

  32. G. Francois and P. Lennart, J. Phys. Chem., 99, 9201 (1995).

    Article  Google Scholar 

  33. M. Zhang, J. Zhang, and X. Song, US 7, 262, 181 B2 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, H., He, J., Huang, Y. et al. Fabrication of oxidized sodium carboxymethylcellulose from viscose fibers and their viscosity behaviors. Fibers Polym 14, 1266–1270 (2013). https://doi.org/10.1007/s12221-013-1266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1266-1

Keywords

Navigation