Skip to main content
Log in

Recent progress on conventional and non-conventional electrospinning processes

Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrospinning is a process of producing micro- and nanoscale fibers using electrostatically charged polymeric solutions under various conditions. Most synthetic and naturally occurring polymers can be electrospun using appropriate solvents and/or their blends. Because of the fascinating properties of electrospun fibers, electrospinning has recently attracted enormous attention worldwide. Initially, this method did not receive much industrial attention due to lower production rates, costs, and lack of interest in size, shape, and flexibility of electrospun nanofibers. However, with the advancement of needleless electrospinning, multiple needles in series, near-field electrospinning techniques, and nanotechnology in particular, this is no longer an issue. This paper outlines the recent progress on the production of various sizes and shapes of fibers using conventional and non-conventional electrospinning processes (e.g., rotating drum and disc, translating spinnerets, rotating strings of electrodes in polymeric solutions, and forcespinning) and presents a complete view of electrospun fiber productions techniques and the resultant products’ applications in different fields to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. Taylor, Proceedings of Royal Society of London, London, 313, 1515 (1969).

    Google Scholar 

  2. R. K. Bharath, Ph.D. Dissertation, Miami University, Oxford, Ohio, 2006.

  3. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 15 (2003).

    Google Scholar 

  4. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 16 (1999).

    Article  Google Scholar 

  5. J. H. He, Y. Q. Wan, and J. Y. Yu, Int. J. Nonlinear Sci. Numer. Simul., 5, 3 (2004).

    Google Scholar 

  6. J. H. Wendorff, S. Agarwal, and A. Greiner, “Electrospinning: Materials, Processing, and Applications”, Willy-VCH, Singapore, 2012.

    Book  Google Scholar 

  7. L. Y. Yeo and J. R. Friend, J. Experimental Nanoscience, 1, 2 (2006).

    Google Scholar 

  8. E. V. Kalayei, K. P. Patra, A. Bauer, C. S. Ugbolue, K. Y. Kim, and B. S. Warner, J. Adv. Mater., 36, 4 (2004).

    Google Scholar 

  9. W. Kataphinan, Ph.D. Dissertation, The University of Akron, Ohio, 2004.

  10. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 9 (2000).

    Article  Google Scholar 

  11. Y. K. Kang, C. H. Park, J. Kim, and T. J. Kang, Fiber. Polym., 8, 564 (2008).

    Article  Google Scholar 

  12. A. D. Vaisniene, J. Katunskis, and G. Buika, Fibers Text. East. Eur., 17, 6 (2009).

    Google Scholar 

  13. M. Gorji, A. A. A. Jeddi, and A. A. Gharehaghaji, J. Appl. Polym. Sci., 125, 5 (2012).

    Article  Google Scholar 

  14. J. P. Chen, G. Y. Chang, and J. K. Chen, Colloid. Surface. A: Physicochem. Eng. Aspect., 317, 450 (2008).

    Article  Google Scholar 

  15. R. A. Thakur, C. A. Florek, J. Kohn, and B. B. Michniak, Int. J. Pharm., 364, 1 (2008).

    Article  Google Scholar 

  16. C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Biomaterials, 25, 5 (2004).

    Google Scholar 

  17. L. J. Levy, U.S. Patent, 4549545 (1985).

  18. D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Adv. Appl. Mech., 41, 42 (2007).

    Google Scholar 

  19. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 4 (2002).

    Google Scholar 

  20. L. R. Xu, L. Li, C. M. Lukehart, and H. Kuai, J. Nanosci. Nanotechnol., 7, 7 (2007).

    Google Scholar 

  21. J. S. Kim and D. H. Reneker, Polym. Compos., 20, 1 (1999).

    Article  Google Scholar 

  22. P. J. Goldstein, Master’s Thesis, University of Florida, Florida, 2004.

  23. H. Fong and D. H. Reneker, “Electrospinning and Formation of Nanofibers”, in Structure Formation in Polymer Fibers, (D. R. Salem Ed.), pp.4585–4592, Princeton, Hanser Gardner Publication Inc., 2000.

    Google Scholar 

  24. C. H. Park, C. H. Kim, L. D. Tijing, D. H. Lee, M. H. Yu, H. R. Pant, Y. Kim, and C. S. Kim, Fiber. Polym., 13, 339 (2012).

    Article  CAS  Google Scholar 

  25. L. Rayleigh, Philosophical Magazine Series 5, 14, 87 (1882).

    Google Scholar 

  26. L. Rayleigh, Proceedings of Royal Society of London, UK, 29 (1897).

    Google Scholar 

  27. G. Taylor, Proceedings of Royal Society of London, A 28, UK, 280, 1382 (1964).

    Google Scholar 

  28. G. Taylor, Proceedings of Royal Society of London, A 291 (1966).

    Google Scholar 

  29. A. Formhals, US Patent, 1975504 (1934).

  30. P. J. Berry, US Patent, 5024789 (1991).

  31. A. Formhals, US Patent, 2349950 (1944).

  32. P. Baumgarten, J. Colloid Interface Sci., 36, 1 (1971).

    Article  Google Scholar 

  33. T. Subbiah, S. G. Bhat, W. R. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polym. Sci., 96, 2 (2005).

    Article  Google Scholar 

  34. J. Doshi, Ph.D. Dissertation, University of Akron, Akron, Ohio, 1994.

  35. J. Doshi and D. H. Reneker, J. Electrost., 35, 2 (1995).

    Article  Google Scholar 

  36. G. Srinivasan, Ph.D. Dissertation, University of Akron, Akron, Ohio, 1994.

  37. G. Srinivasan and D. H. Reneker, Polym. Int., 36, 2 (1995).

    Article  Google Scholar 

  38. I. Chun, Ph.D. Dissertation, University of Akron, Akron, Ohio, 1997.

  39. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 16 (1999).

    Article  Google Scholar 

  40. R. Jaeger, M. M. Bergshoef, M. C. Ibatlle, H. Schönherr, and J. G. Vancso, “Macromolecular Symposia, Rolduc Polymer Meeting 10”, p.127, Netherland, 1998.

    Google Scholar 

  41. R. Jaeger, H. Schönherr, and G. J. Vansco, Macromolecules, 29, 23 (1996).

    Article  Google Scholar 

  42. H. Fong, J. Macromol. Sci. B-Phys., 36, 2 (1997).

    Google Scholar 

  43. M. D. Stenoien, W. J. Drasler, R. J. Scott, and M. L. Jenson, U.S. Patent 5840240 (1998).

  44. S. Zarkoob, Ph.D Disertation, University of Akron, Ohio, 1998.

  45. S. Zarkoob, R. K. Eby, D. H. Reneker, S. D. Hudson, D. Ertley, and W. W. Adams, Polymer, 45, 3973 (2004).

    Article  CAS  Google Scholar 

  46. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof, Macromolecules, 33, 8 (2000).

    Article  Google Scholar 

  47. P. W. Gibson, H. L. S. Gibson, and D. Rivin, ALCHE Journal, 45, 1 (1999).

    Article  Google Scholar 

  48. M. Diaz, N. J. Pinto, J. Gao, and A. G. Mac Diarmid, “National Conference of Undergradaute Research”, University of Kentucky, Lexington, 2001.

    Google Scholar 

  49. J. S. Kim and D. S. Lee, Polymer, 32, 7 (2000).

    CAS  Google Scholar 

  50. M. Bognitzki, T. Frese, J. H. Wendorff, and A. Grenier, 219th ACS National Meeting, San Francisco, CA, PMSE-173, American Chemical Society, Wasington, D.C. 2000.

    Google Scholar 

  51. M. Bognitzki, T. Frese, J. H. Wendorff, and A. Greiner, Polym. Mater.: Sci. Eng., 82, 45 (2000).

    CAS  Google Scholar 

  52. C. Drew, X. Wang, K. Senecal, H. Schreuder-Gibson, J. He, S. Tripathy, and L. Samuelson, Proceedings of the SPE 58th Annual Technical Conference, 2 (2000).

    Google Scholar 

  53. A. F. Spivak and Y. A. Dzenis, Appl. Phys. Lett., 73, 21 (1998).

    Article  Google Scholar 

  54. B. Wessling, Synthetic Metals, 93, 2 (1998).

    Article  Google Scholar 

  55. K. Woraphan, D. Sally, D. H. Reneker, and S. Daniel, US Patent, WO012661, 2001.

  56. D. Smith, D. Reneker, A. McManus, H. Schreuder-Gibson, C. Mello, M. Sennett, and P. Gibson, US Patent, WO0127365, 2001.

  57. H. Liu, Ph.D. Dissertation, University of Georgia, Athens, 2008.

  58. X. Xu, Q. Yang, Y. Wang, H. Hu, X. Chen, and X. Jing, Eur. Polym. J., 42, 2081 (2006).

    Article  CAS  Google Scholar 

  59. C.-M. Hsu, Master’s Thesis, Worcester Polytechnic Institute, Worcester, MA, 2003.

  60. M. H. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Physics of Fluids, 13, 2221 (2001).

    Article  CAS  Google Scholar 

  61. M. E. T. Molares, A. G. Balogh, T. W. Cornelius, R. Neumann, and C. Trautmann, Appl. Phys. Lett., 85, 5337 (2004).

    Article  Google Scholar 

  62. Y. N. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Appl. Phys. Lett., 78, 8 (2001).

    Google Scholar 

  63. D. Han and A. J. Steckl, Langmuir, 25, 16 (2009).

    Google Scholar 

  64. X. Wang, H. Niu, X. Wang, and T. Lin, J. Nanomater., 2012, 785920 (2012).

    Google Scholar 

  65. W. S. Khan, R. Asmatulu, Y. H. Lin, Y. Y. Chen, and J. Ho, J. Nanotechnol., 2012, 138438 (2012).

    Google Scholar 

  66. A. K. Haghi and M. Akbari, Physica Status Solidi, 204, 6 (2007).

    Google Scholar 

  67. V. E. Kalayci and P. K. Patra, J. Adv. Mater., 36, 4 (2004).

    Google Scholar 

  68. J. H. He, Y. Q. Wan, and J. Y. Yu, Int. J. Nonlinear Sci. Numer. Simul., 5, 3 (2004).

    Google Scholar 

  69. I. Sas, R. E. Gorga, J. A. Joines, and K. A. Thoney, J. Polym. Sci., 50, 12 (2012).

    Article  Google Scholar 

  70. M. S. Sumitha, K. T. Shalumon, V. N. Sreeja, R. Jayakumar, S. V. Nair, and D. Menon, J. Macromol. Sci.-A: Pure and Applied Chemistry, 49, 2 (2012).

    Google Scholar 

  71. A. P. S. Sawhney, B. Condon, K. V. Singh, S. S. Pang, G. Li, and D. Hui, Text. Res. J., 78, 8 (2008).

    Article  Google Scholar 

  72. J. Zheng, A. He, J. Li, J. Xu, and C. C. Han, Polymer, 47, 20 (2006).

    Google Scholar 

  73. M. Kong, R. Jung, H. S. Kim, and H. J. Jin, Colloids Surf. A: Physicochem. Eng. Asp., 313–314, 411 (2008).

    Article  Google Scholar 

  74. M. Ma, R. M. Hill, J. L. Lowery, S. V. Fridrikh, and G. C. Rutledge, Langmuir, 21, 12 (2005).

    Google Scholar 

  75. K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, H. Vasquez, and K. Lozano, Material Today, 13, 11 (2010).

    Article  Google Scholar 

  76. S., Ramakrishna, “An Introduction to Electrospinning and Nanofibers”, World Scientific, Singapore, 2005.

    Book  Google Scholar 

  77. N. Nuraje, W. S. Khan, M. Ceylan, Y. Lie, and R. Asmatulu, Mater. Chem. A, 1, 1929 (2013).

    Article  CAS  Google Scholar 

  78. Q. Zhang, Z. Chang, M. Zhu, X. Mo, and D. Chen, Nanotechnology, 18, 115611 (2007).

    Article  Google Scholar 

  79. P. E. Slade and L. T. Jenkins, “Thermal Characterization Techniques,” Marcel Dekker, New York, 1970.

    Google Scholar 

  80. J. M. Biercuka, C. M. Liaguno, M. Radosavljevic, K. J. Hyunc, T. A. Johnson, and E. J. Fischer, Appl. Phys. Lett., 80, 15 (2002).

    Google Scholar 

  81. D. Hansen and H. C. Chong, J. Polym. Sci.-A: General Papers, 3, 2 (1965).

    Google Scholar 

  82. W. S. Khan, R. Asmatulu, and M. B. Yildirim, J. Aerospace Eng., 25, 3 (2012).

    Article  Google Scholar 

  83. F. A. Sheikh, N. A. M. Barakat, M. A. Kanjwal, S. J. Park, H. Kim, and H. Y. Kim, Fiber. Polym., 11, 384 (2010).

    Article  CAS  Google Scholar 

  84. A. López-Rubio, E. Sanchez, S. Wilkanowicz, Y. Sanz, and J. M. Lagaron, Food Hydrocolloids, 28, 1 (2012).

    Article  Google Scholar 

  85. D. H. Reneker and I. Chun, J. Nanotechnol., 7, 3 (1996).

    Article  Google Scholar 

  86. H. Niu and T. Lin, Journal of Nanomaterials, Vol. 2012 (2012), Article ID 725950, p. 13.

    Google Scholar 

  87. P. Gupta, R. Asmatulu, G. Wilkes, and R. O. Claus, J. Appl. Polym. Sci., 100, 4935 (2006).

    Article  CAS  Google Scholar 

  88. A. Seema, W. H. Joachim, and G. Andreas, Polymer, 49, 26 (2008).

    Google Scholar 

  89. V. Beny, V. Horacio, and L. Karen, Polym. Eng. Sci., 52, 10 (2012).

    Google Scholar 

  90. F. Cengiz-Callioglu, O. Jirsak, and M. Dayik, Fiber. Polym., 13, 1266 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Asmatulu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, W.S., Asmatulu, R., Ceylan, M. et al. Recent progress on conventional and non-conventional electrospinning processes. Fibers Polym 14, 1235–1247 (2013). https://doi.org/10.1007/s12221-013-1235-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1235-8

Keywords

Navigation