Skip to main content
Log in

The variability of mechanical properties and molecular conformation among different spider dragline fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Spider dragline fiber is a high-performance biomaterial that has received much attention. To screen the outstanding spider dragline fibers, the mechanical properties and microstructures of dragline fibers collected from Nephia clavata, Nephia pilipes, Argiope bruennichi and Argiope amoena were investigated. It was found that the mechanical properties of spider dragline fiber were variable. Among the four different species, the larger spiders did not always extrude thicker dragline fibers and produce fibers with the maximum breaking force. The dragline fibers could sustain one to three times the body weight of the spider at a reeling speed of 20 mm/s. N. clavata dragline fiber showed a stronger breaking stress and initial modulus than that of N. pilipes, A. bruennichi and A. amoena. With an increasing reeling speed, the breaking strain decreased; the initial modulus increased in N. clavata, N. pilipes and A. bruennichi, but the breaking stress exhibited a different tendency. The results also revealed that dragline fiber of N. clavata contained the most β-sheet polypeptides and an excellent orientation of β-sheet molecular chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Römer and T. Scheibel, Landes Bioscience, 2, 154 (2008).

    Google Scholar 

  2. M. B. Hinman, J. A. Jones, and R. V. Lewis, Trends Biotechnol., 18, 374 (2000).

    Article  CAS  Google Scholar 

  3. T. Scheibel, Microb. Cell Fact., 3, 14 (2004).

    Article  Google Scholar 

  4. M. Heim, D. Keerl, and T. Scheibel, Angew. Chem. Int. Ed., 48, 3584 (2009).

    Article  CAS  Google Scholar 

  5. C. Fu, Z. Shao, and F. Vollrath, Chem. Commum., 6515 (2009).

  6. S. Osaki, Nature, 384, 419 (1996).

    Article  CAS  Google Scholar 

  7. S. Osaki, Int. J. Biol. Macromol., 24, 283 (1999).

    Article  CAS  Google Scholar 

  8. Y. Termonia, Macromolecules, 27, 7378 (1994).

    Article  CAS  Google Scholar 

  9. F. Vollrath, T. Holtet, H. Thogersen, and S. Frische, Proc. R. Soc. Lond. B., 263, 147 (1996).

    Article  Google Scholar 

  10. Z. Shao and F. Vollrath, Polymer, 40, 1799 (1999).

    Article  CAS  Google Scholar 

  11. B. Madsen, Z. Z. Shao, and F. Vollrath, Int. J. Biol. Macromol., 24, 301 (1999).

    Article  CAS  Google Scholar 

  12. F. Vollrath, B. Madsen, and Z. Shao, Proc. R. Soc. Lond. B., 268, 2339 (2001).

    Article  CAS  Google Scholar 

  13. N. Du, X. Y. Liu, J. Narayanan, L. Li, M. L. M. Lim, and D. Li, Biophys. J., 91, 4528 (2006).

    Article  CAS  Google Scholar 

  14. D. M. Kane, N. Naidoo, and G. R. Staib, J. Appl. Phys., 108, 073509 (2010).

    Article  Google Scholar 

  15. S. Putthanarat, N. Stribeck, S. A. Fossey, R. K. Eby, and W. W. Adams, Polymer, 41, 7735 (2000).

    Article  CAS  Google Scholar 

  16. J. Y. J. Barghout, B. L. Thiel, and C. Viney, Int. J. Bio. Macromol., 24, 211 (1999).

    Article  CAS  Google Scholar 

  17. K. Augsten, P. Muhlig, and C. Herrmann, Scanning, 22, 12 (2000).

    Article  CAS  Google Scholar 

  18. S. Ling, Z. Qi, D. P. Knight, Z. Shao, and X. Chen, Biomacromolecules, 12, 3344 (2011).

    Article  CAS  Google Scholar 

  19. P. Papadopoulosa, J. Sölter, and F. Kremer, Eur. Phys. J. E., 24, 193 (2007).

    Article  Google Scholar 

  20. A. Glišovi and T. Salditt, Appl. Phys. A: Mater. Sci. Process., 87, 63 (2007).

    Article  Google Scholar 

  21. M. S. Creager, J. E. Jenkins, L. A. Thagard-Yeaman, A. E. Brooks, J. A. Jones, R. V. Lewis, G. P. Holland, and J. L. Yarger, Biomacromolecules, 11, 2039 (2010).

    Article  CAS  Google Scholar 

  22. M. Yang and T. Asakura, J. Biochem., 137, 721 (2005).

    Article  CAS  Google Scholar 

  23. C. Y. Hayashi, N. H. Shipley, and R. V. Lewis, Int. J. Biol. Macromol., 24, 271 (1999).

    Article  CAS  Google Scholar 

  24. D. B. Gillespie, C. Viney, and P. Yager, “Silk Polymers: Materials Science and Biotechnology (ACS Symposium Series)”, Vol.544, pp.155–167, American Chemical Society, Washington D. C., 1994.

    Google Scholar 

  25. Z. Shao, F. Vollrath, J. Sirichaisitb, and R. J. Young, Polymer, 40, 2493 (1999).

    Article  CAS  Google Scholar 

  26. Z. Shao, R. J. Young, and F. Vollrath, Int. J. Biol. Macromol., 24, 295 (1999).

    Article  CAS  Google Scholar 

  27. M. E. Rousseau, T. Lefèvre, L. Beaulieu, T. Asakura, and M. Pézolet, Biomacromolecules, 5, 2247 (2004).

    Article  CAS  Google Scholar 

  28. M. E. Rousseau, L. Beaulieu, T. Lefèvre, J. Paradis, T. Asakura, and M. Pézolet, Biomacromolecules, 7, 2512 (2006).

    Article  CAS  Google Scholar 

  29. T. Lefèvre, M. E. Rousseau, and M. Pézolet, Biophys J., 92, 2885 (2007).

    Article  Google Scholar 

  30. T. Lefèvre and M. Pézolet, Soft Matter, 8, 6350 (2012).

    Article  Google Scholar 

  31. Z. J. Pan, C. P. Li, and Q. Xu, J. Appl. Polym. Sci., 92, 901 (2004).

    Article  CAS  Google Scholar 

  32. J. R. Griffiths and V. R. Salanitri, J. Mater. Sci., 15, 491 (1980).

    Article  Google Scholar 

  33. F. Vollrath, Rev. Mol. Biotech., 74, 67 (2000).

    Article  CAS  Google Scholar 

  34. J. Sirichaisit, R. J. Young, and F. Vollrath, Polymer, 41, 1223 (2000).

    Article  CAS  Google Scholar 

  35. T. Lefèvre, F. Paquet-Mercier, J. F. Rioux-Dube, and M. Pézolet, Biopolymers, 97, 322 (2011).

    Article  Google Scholar 

  36. Z.-J. Pan, and M. Liu, Fiber. Polym., 10, 285 (2009).

    Article  CAS  Google Scholar 

  37. M. A. Garrido, M. Elices, C. Viney, and J. Pérez-Rigueiro. Polymer, 43, 1537 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Nakagaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Han, L., Wang, Y. et al. The variability of mechanical properties and molecular conformation among different spider dragline fibers. Fibers Polym 14, 1190–1195 (2013). https://doi.org/10.1007/s12221-013-1190-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1190-4

Keywords

Navigation