Skip to main content
Log in

Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work the feasibility of extracting cellulose from cotton, sisal and flax fibers, corn stover and rice husk by means of usual chemical procedures such as acid hydrolysis, chlorination, alkaline extraction, and bleaching was analyzed. Cellulose nanowhiskers from these sources, and from commercial cellulose, were produced by the acid hydrolysis of the obtained celluloses. The final products were characterized by means of Thermogravimetric Analysis (TGA), Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) and Atomic Force Microscopy (AFM). The chemical procedure used to obtain cellulose nanowhiskers was effective in all cases but differences on the thermal stability, chemical composition, crystallinity and morphology were found due to the dissimilar nature of the different sources. Thus, this work demonstrates that the morphology and physical properties of cellulose nanowhiskers synthesized by the same conditions are strongly dependent on their source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Satyanarayana, G. G. C. Arizaga, and F. Wypych, Prog. Polym. Sci., 34, 982 (2009).

    Article  CAS  Google Scholar 

  2. M. Kurakake, W. Kisaka, K. Ouchi, and T. Komaki, Appl. Biochem. Biotechnol., 90, 251 (2001).

    Article  CAS  Google Scholar 

  3. N. Reddy and Y. Yang, Trends in Biotechnology, 23, 22 (2005).

    Article  CAS  Google Scholar 

  4. V. Placet, Compos. Part-A: Appl. S., 40, 1111 (2009).

    Article  Google Scholar 

  5. T. Itoh and R. M. Brown, Planta, 160, 372 (1984).

    Article  Google Scholar 

  6. B. Xiao, X. F. Sun, and R. Sun, Polym. Degrad. Stab., 74, 307 (2001).

    Article  CAS  Google Scholar 

  7. C. Baillie, “Green Composites: Polymer Composites and the Environment” (D. T. NishinoEd.), p.49, in bington Hall, Abington Cambridge CB1 6AH, England, Woodhead Publishing Limited: Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University. 2004.

  8. J. Morán, V. Alvarez, V. Cyras, and A. Vázquez, Cellulose, 15, 149 (2008).

    Article  Google Scholar 

  9. S. Elanthikkal, U. Gopalakrishnapanicker, S. Varghese, and J. T. Guthrie, Carbohyd. Polym., 80, 852 (2010).

    Article  CAS  Google Scholar 

  10. L. Petersson and K. Oksman, Compos. Sci. Technol., 66, 2187 (2006).

    Article  CAS  Google Scholar 

  11. Y. Chen, C. Liu, P. R. Chang, X. Cao, and D. P. Anderson, Carbohyd. Polym., 76, 607 (2009).

    Article  CAS  Google Scholar 

  12. M. A. S. Azizi Samir, F. Alloin, and A. Dufresne, Biomacromolecules, 6, 612 (2005).

    Article  Google Scholar 

  13. E. de Morais Teixeira, A. Corrêa, A. Manzoli, F. de Lima Leite, C. de Oliveira, and L. Mattoso, Cellulose, 17, 595 (2010).

    Article  Google Scholar 

  14. E. H. Qua and P. R. Hornsby, Plastics, Rubber and Composites, 40, 300 (2011).

    Article  CAS  Google Scholar 

  15. S. M. L. Rosa, N. Rehman, M. I. G. de Miranda, S. M. B. Nachtigall, and C. I. D. Bica, Carbohyd. Polym., 87, 1131 (2012).

    Article  CAS  Google Scholar 

  16. K. L. Kadam and J. D. McMillan, Bioresource Technology, 88, 17 (2003).

    Article  CAS  Google Scholar 

  17. S. Sokhansanj, A. Turhollow, J. Cushman, and J. Cundiff, Biomass and Bioenergy, 23, 347 (2002).

    Article  Google Scholar 

  18. A. Morin and A. Dufresne, Macromolecules, 35, 2190 (2002).

    Article  CAS  Google Scholar 

  19. L. Petersson, I. Kvien, and K. Oksman, Compos. Sci. Technol., 67, 2535 (2007).

    Article  CAS  Google Scholar 

  20. A. Dufresne, D. Dupeyre, and M. R. Vignon, J. Appl. Polym. Sci., 76, 2080 (2000).

    Article  CAS  Google Scholar 

  21. H. Lönnberg, L. Fogelström, L. Berglund, E. Malmström, and A. Hult, Eur. Polym. J., 44, 2991 (2008).

    Article  Google Scholar 

  22. W. J. Orts, J. Shey, S. H. Imam, G. M. Glenn, M. E. Guttman, and J.-F. Revol, J. Polym. Environ., 13, 301 (2005).

    Article  CAS  Google Scholar 

  23. J. M. Lagaron and A. Lopez-Rubio, Trends in Food Science & Technology, 22, 611 (2011).

    Article  CAS  Google Scholar 

  24. M. Wollerdorfer and H. Bader, Ind. Crop. Prod., 8, 105 (1998).

    Article  CAS  Google Scholar 

  25. H. M. Akil, M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, and A. Abu Bakar, Materials & Design, 32, 4107 (2011).

    Article  CAS  Google Scholar 

  26. N. Johar, I. Ahmad, and A. Dufresne, Ind. Crop. Prod., 37, 93 (2012).

    Article  CAS  Google Scholar 

  27. P. M. Stefani, D. Garcia, J. Lopez, and A. Jimenez, J. Therm. Anal. Calorim., 81, 315 (2005).

    Article  CAS  Google Scholar 

  28. L. Ludueña, D. Fasce, V. Alvarez, and P. Stefani, BioResources, 6, 1440 (2011).

    Google Scholar 

  29. H. Erdtman, J. Polym. Sci. Part B: Polym. Lett., 10, 228 (1972).

    Article  Google Scholar 

  30. X. Yang, F. Ma, Y. Zeng, H. Yu, C. Xu, and X. Zhang, International Biodeterioration & Amp; Biodegradation, 64, 119 (2010).

    Article  CAS  Google Scholar 

  31. R. Zuluaga, J. L. Putaux, J. Cruz, J. Vélez, I. Mondragon, and P. Gañán, Carbohyd. Polym., 76, 51 (2009).

    Article  CAS  Google Scholar 

  32. K. Kavkler, N. Gunde-Cimerman, P. Zalar, and A. Demšar, Polym. Degrad. Stab., 96, 574 (2011).

    Article  CAS  Google Scholar 

  33. S. Y. Oh, D. I. Yoo, Y. Shin, and G. Seo, Carbohyd. Res., 340, 417 (2005).

    Article  CAS  Google Scholar 

  34. P. Gañán, J. Cruz, S. Garbizu, A. Arbelaiz, and I. Mondragon, J. Appl. Polym. Sci., 94, 1489 (2004).

    Article  Google Scholar 

  35. P. Gañán, R. Zuluaga, J. M. Velez, and I. Mondragon, Macromolecular Bioscience, 4, 978 (2004).

    Article  Google Scholar 

  36. J. X. Sun, X. F. Sun, H. Zhao, and R. C. Sun, Polym. Degrad. Stab., 84, 331 (2004).

    Article  CAS  Google Scholar 

  37. F. Xu, J. X. Sun, Z. C. Geng, C. F. Liu, J. L. Ren, R. C. Sun, P. Fowler, and M. S. Baird, Carbohyd. Polym., 67, 56 (2007).

    Article  CAS  Google Scholar 

  38. C. M. G. C. Renard and M. C. Jarvis, Plant Physiology, 119, 1315 (1999).

    Article  CAS  Google Scholar 

  39. M. Ali, A. M. Emsley, H. Herman, and R. J. Heywood, Polymer, 42, 2893 (2001).

    Article  CAS  Google Scholar 

  40. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng Fuel 86, 1781 (2007).

    Article  CAS  Google Scholar 

  41. A. K. Bledzki, S. Reihmane, and J. Gassan, J. Appl. Polym. Sci., 59, 1329 (1996).

    Article  CAS  Google Scholar 

  42. A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276–277, 1 (2000).

    Article  Google Scholar 

  43. R. Li, J. Fei, Y. Cai, Y. Li, J. Feng, and J. Yao, Carbohyd. Polym., 76, 94 (2009).

    Article  CAS  Google Scholar 

  44. G. Varhegyi, M. J. Antal, T. Szekely, F. Till, and E. Jakab, Energy & Fuels, 2, 267 (1988).

    Article  CAS  Google Scholar 

  45. N. Wang, E. Ding, and R. Cheng, Polymer, 48, 3486 (2007).

    Article  CAS  Google Scholar 

  46. L. Ludueña, A. Vázquez, and V. Alvarez, Carbohyd. Polym., 87, 411 (2012).

    Article  Google Scholar 

  47. M. Roman and W. T. Winter, Biomacromolecules, 5, 1671 (2004).

    Article  CAS  Google Scholar 

  48. M. Martínez-Sanz, A. Lopez-Rubio, and J. M. Lagaron, Carbohyd. Polym., 85, 228 (2011).

    Article  Google Scholar 

  49. L. Y. Mwaikambo and M. P. Ansell, J. Appl. Polym. Sci., 84, 2222 (2002).

    Article  CAS  Google Scholar 

  50. L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  51. E. D. M. Teixeira, D. Pasquini, A. A. S. Curvelo, E. Corradini, M. N. Belgacem, and A. Dufresne, Carbohyd. Polym., 78, 422 (2009).

    Article  CAS  Google Scholar 

  52. B.-D. Park, S. G. Wi, K. H. Lee, A. P. Singh, T.-H. Yoon, and Y. S. Kim, Biomass and Bioenergy, 25, 319 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro N. Ludueña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludueña, L.N., Vecchio, A., Stefani, P.M. et al. Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fibers Polym 14, 1118–1127 (2013). https://doi.org/10.1007/s12221-013-1118-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1118-z

Keywords

Navigation