Skip to main content
Log in

Miscibility and performance evaluation of natural-flour-filled PP/PBS and PP/PLA bio-composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This research evaluates the miscibility and performance of polypropylene (PP)/polybutylene succinate (PBS) and PP/polylactic acid (PLA) blend and natural-flour-filled, PP/PLA and PP/PBS blend bio-composites. The melting temperature (T m ) and glass transition temperature (T g ) of pure PP, PBS and PLA showed a single peak but differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) presented two peaks for the T m and T g of the PP/PBS and PP/PLA blends. These results indicated that the PP/PBS and PP/PLA blend systems existed as immiscible blends. These results were also confirmed by the scanning electron microscopy (SEM) micrographs of the tensile fracture surface of the PP/PBS and PP/ PLA blends. At a PP/PBS and PP/PLA blend ratio of 70/30, the tensile and flexural strengths of bamboo flour (BF)- and wood flour (WF)-filled, PP/PBS and PP/PLA blend bio-composites were similar to those of BF- and WF-filled, PP and PBS bio-composites. In addition, these strengths of maleic anhydride-grafted PP (MAPP)- and acrylic acid-grafted PP (AAPP)-treated, BF- and WF-filled, PP/PBS and PP/PLA blend bio-composites were higher than those of non-treated bio-composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Zhao, X. Q. Wang, J. Zeng, G. Yang, F. H. Shi, and Q. Yan, J. Appl. Polym. Sci., 97, 2273 (2005).

    Article  CAS  Google Scholar 

  2. H.-S. Kim, H.-J. Kim, J.-W. Lee, and I.-G. Choi, Polym. Degrad. Stabil., 91, 1117 (2006).

    Article  CAS  Google Scholar 

  3. J. Li, Y. He, and Y. Inoue, Polym. Int., 23, 949 (2003).

    Article  Google Scholar 

  4. M. Shibata, S. Oyamada, S. Kobayashi, and D. Yaginuma, J. Appl. Polym. Sci., 92, 3857 (2004).

    Article  CAS  Google Scholar 

  5. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Sci. Technol., 66, 1813 (2006).

    Article  CAS  Google Scholar 

  6. D. S. Rosa, C. G. F. Guedes, and M. A. G. Bardi, Polym. Test., 26, 209 (2007).

    Article  CAS  Google Scholar 

  7. J. Kim, J. H. Kim, T. K. Shin, H. J. Choi, and M. S. Jhon, Eur. Polym. J., 37, 2131 (2001).

    Article  CAS  Google Scholar 

  8. Y. J. Kim and O. O. Park, J. Environ. Polym. Degrad., 7, 53 (1999).

    Article  CAS  Google Scholar 

  9. J. John, R. Mani, and M. Bhattacharya, J. Polym. Sci., Part A: Polym. Chem., 40, 2003 (2002).

    Article  CAS  Google Scholar 

  10. H. Pehlivan, D. Balkose, S. Ulku, and F. Tihminlioglu, J. Appl. Polym. Sci., 99, 143 (2006).

    Article  Google Scholar 

  11. E. D. Ray, P. R. Gruber, and D. E. Henton, Adv. Mater., 23, 1841 (2000).

    Google Scholar 

  12. L. Jiang, M. P. Wolcott, and J. Zhang, Biomacromolecules, 7, 199 (2006).

    Article  Google Scholar 

  13. Y. F. Shih, T. Y. Wang, R. J. Jeng, J. Y. Wu, and C. C. Teng, J. Polym. Environ., 15, 151 (2007).

    Article  Google Scholar 

  14. Y. Ichikawa, “Asia’s First Bioplastic Conference and Exhibition”, 49 (2006).

    Google Scholar 

  15. Y. Kori, K. Kitagawa, and H. Hamada, J. Appl. Polym. Sci., 98, 603 (2005).

    Article  CAS  Google Scholar 

  16. H. Ismail and M. Nasir, Polym.Test., 21, 163 (2002).

    Article  CAS  Google Scholar 

  17. H.-S. Kim, H.-S. Yang, H.-J. Kim, B.-J. Lee, and T.-S. Hwang, J. Therm. Anal. Cal., 81, 299 (2005).

    Article  CAS  Google Scholar 

  18. P. S. George, Oxford University Press, 22 (2003).

  19. S. Kim and H.-J. Kim, Macromol. Mater. Eng., 29, 339 (2007).

    Article  Google Scholar 

  20. R. Qi, J. Nie, C. Zhou, D. Mao, and B. Zhang, J. Appl. Polym. Sci., 102, 6081 (2006).

    Article  CAS  Google Scholar 

  21. H.-S. Kim, S. Kim, H.-J. Kim, and H.-S. Yang, Thermochim. Acta., 451, 181 (2006).

    Article  CAS  Google Scholar 

  22. M. Shibata, N. Teramoto, and Y. Inoue, Polym., 48, 2257 (2007).

    Article  Google Scholar 

  23. A. Tedesco, R. V. Barbosa, S. M. B. Nachtigall, and R. S. Mauler, Polym. Test., 21, 11 (2002).

    Article  CAS  Google Scholar 

  24. Y. F. Kim, C. N. Choi, Y. D. Kim, K. Y. Lee, and M. S. Lee, Fiber. Polym., 5, 270 (2004).

    Article  CAS  Google Scholar 

  25. H.-S. Kim, S. Kim, and H.-J. Kim, Macromol. Mater. Eng., 291, 762 (2006).

    Article  CAS  Google Scholar 

  26. H.-S. Kim, B.-H. Lee, S.-W. Choi, S. Kim, and H.-J. Kim, Compos. Part A., 38, 1473 (2007).

    Article  Google Scholar 

  27. V. Tserki, P. Matzinos, and C. Panayiotou, Compos. Part-A., 37, 1231 (2006).

    Article  Google Scholar 

  28. C. S. Wu, Macromol. Biosci., 5, 352 (2005).

    Article  CAS  Google Scholar 

  29. F. Marti-Ferrer, F. Vilaplana, A. Ribes-Greus, A. Benedito-Borras, and C. Sanz-Box, J. Appl. Polym. Sci., 99, 1823 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Joong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HS., Kim, HJ. Miscibility and performance evaluation of natural-flour-filled PP/PBS and PP/PLA bio-composites. Fibers Polym 14, 793–803 (2013). https://doi.org/10.1007/s12221-013-0793-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0793-0

Keywords

Navigation