Skip to main content
Log in

The effect of spinning parameters on mechanical and physical properties of core-spun yarns produced by the three-strand modified method (TSMM)

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The effect of spinning parameters on core-spun yarns properties manufactured using three-strand modified method (TSMM) was analyzed. Of the various spinning parameters, strand spacing, yarn linear density and yarn twist have a crucial effect on core-spun yarn properties. To achieve the objectives of this research, general physical properties of core-spun yarns together with existing standards were thoroughly studied. First of all, the strand spacing and yarn linear density were optimized. Afterwards, the effects of variation of yarn twist and sheath roving linear density on core-spun yarns properties were investigated. Finally, the physical and mechanical properties of TSMM yarns were compared with those of siro and conventional ring core-spun yarns counterparts. It was found that, the best strand spacing and yarn linear density to produce core-spun yarns are 8 mm and 45 tex, respectively. Results showed that, tenacity of TSMM yarns increases up to a certain twist level beyond which it reduces. The result confirmed that 45 tex yarns produced by three rovings of the same count are superior with regards to tenacity and hairiness. The optimized yarns produced by three-strand modified method enjoy superior physical and mechanical properties in comparison to the ring and siro core-spun yarns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Brunk, Spinnovation, Source: www.suessen.com, 2005.

  2. C. L. Su, M. C. Maa, and H. Y. Yang, Text. Res. J., 74, 607 (2004).

    Article  CAS  Google Scholar 

  3. C. W. Lou, C. W. Chang, C. H. Lei, and W. H. Hsing, Text. Res. J., 75, 395 (2005).

    Article  CAS  Google Scholar 

  4. M. Miao, Y. L. How, and S. Y. Ho, Text. Res. J., 66, 676 (1996).

    Article  CAS  Google Scholar 

  5. A. P. S. Sawhney, K. Q. Robert, G. F. Ruppenicker, and L. B. Kimmel, Text. Res. J., 62, 21 (1992).

    Google Scholar 

  6. A. P. S. Sawhney, G. F. Ruppenicker, L. B. Kimmel, and K. Q. Robert, Text. Res. J., 62, 67 (1992).

    Google Scholar 

  7. G. L. Louis, H. L. Salaun, and L. B. Kimmel, Text. Res. J., 59, 244 (1989).

    Article  Google Scholar 

  8. G. T. Jou, G. C. East, C. A. Lawrence, and W. Oxenham, J. Text. Inst., 87, 78 (1996).

    Article  CAS  Google Scholar 

  9. Y. Matsumoto, H. Kimura, T. Yamamoto, T. Matsuoka, and K. Fukushima, Text. Res. J., 79, 947 (2009).

    Article  CAS  Google Scholar 

  10. Y. Matsumoto, H. Kanai, H. Morooka, H. Kimura, and K. Fukushima, Text. Res. J., 80, 1056 (2010).

    Article  CAS  Google Scholar 

  11. W. Xu, Z. Xia, X. Wang, J. Chen, W. Cui, W. Ye, C. Ding, and X. Wang, Text. Res. J., 81, 223 (2011).

    Article  CAS  Google Scholar 

  12. W. Y. Liu, Y. P. Yu, J. H. He, and S. Y. Wang, Text. Res. J., 77, 200 (2007).

    Article  CAS  Google Scholar 

  13. A. Pourahmad and M. S. Johari, J. Text. Inst., 100, 275 (2009).

    Article  Google Scholar 

  14. A. Pourahmad and M. S. Johari, J. Text. Inst., 102, 540 (2011).

    Article  CAS  Google Scholar 

  15. R. Nield, and A. R. A. Ali, A. Pourahmad, and M. S. Johari, J. Text. Inst., 68, 223 (1977).

    Article  Google Scholar 

  16. C. B. Landstreet and R. R. Ewald, Text. Ind., June, 114 (1953).

    Google Scholar 

  17. P. Soltani and M. S. Johari, J. Text. Inst., 13, 921 (2012).

    Article  Google Scholar 

  18. P. Soltani and M. S. Johari, Fiber. Polym., 13, 110 (2012).

    Article  CAS  Google Scholar 

  19. K. P. S. Cheng, and M. N. Sun, Text. Res. J., 68, 520 (1998).

    Article  CAS  Google Scholar 

  20. M. N. Sun and K. P. S. Cheng, Text. Res. J., 70, 261 (2000).

    Article  CAS  Google Scholar 

  21. S. M. Ishtiaque, K. Dhawan, A. Saxena, and J. Prakash, Textile Asia, September, 118 (1988).

  22. L. Cheng, P. Fu, and X. Yu, Text. Res. J., 74, 763 (2004).

    Article  CAS  Google Scholar 

  23. C. A. Lawrence, “Fundamentals of Spun Yarn Technology”, 1st ed., CRC Press, England, 2003.

    Book  Google Scholar 

  24. J. H. He, Y. P. Yu, J. Y. Yu, W. R. Li, S. Y. Wang, and N. Pan, Text. Res. J., 75, 181 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Soltani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahlouj.chi, R., Soltani, P. & Johari, M.S. The effect of spinning parameters on mechanical and physical properties of core-spun yarns produced by the three-strand modified method (TSMM). Fibers Polym 13, 923–927 (2012). https://doi.org/10.1007/s12221-012-0923-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0923-0

Keywords

Navigation