Skip to main content
Log in

Highly porous three-dimensional poly(lactide-co-glycolide) (PLGA) microfibrous scaffold prepared by electrospinning method: A comparison study with other PLGA type scaffolds on its biological evaluation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, a three-dimensional (3D) poly(lactide-co-glycolide) (PLGA) microfibrous scaffold with high porosity (ca. 90 % porosity) was developed for evaluating its performance in tissue engineering application. A dope solution of PLGA/polyethylene oxide (PEO) blend was electrospun into a methanol coagulation bath for fabricating highly porous 3D PLGA scaffold and a salt leaching method was used for making interconnected pores of 100–200 µm size inside the scaffold. The morphological structure, pore size and porosity of the microfibrous scaffold were determined, and compared with twodimensional (2D) mat-type and 3D sponge-type of PLGA scaffold. Also, swelling ratio, water uptake and compressive strength were compared in order to elucidate the structure-property relationships of different types of the scaffolds, especially in a wet condition. As a result of scanning electron microscopy (SEM) observation, normal human dermal fibroblasts (nHDF) were migrated, attached, and proliferated well inside the 3D scaffold. MTT assay confirmed that the highly porous 3D PLGA microfibrous scaffold had superior cell adhesion and proliferation abilities due to fibrous structure of large specific surface area, and interconnected pore structure. Therefore, this high performance 3D PLGA scaffold can have a high potentiality for application in tissue engineering in comparison with conventional PLGA scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hariraksapitak, O. Suwantong, P. Pavasant, and P. Supaphol, Polymer, 49, 2678 (2008).

    Article  CAS  Google Scholar 

  2. J. M. Kanczler, J. Barry, P. Ginty, S. M. Howdle, K. M. Shakesheff, and R. O. Oreffo, Biochem. Bioph. Res. Co., 352, 135 (2007).

    Article  CAS  Google Scholar 

  3. Y. C. Wang, M. C. Lin, D. M. Wang, and H. J. Hsieh, Biomaterials, 24, 1047 (2003).

    Article  CAS  Google Scholar 

  4. J. Venugopal, S. Low, A. T. Choon, and S. Ramakrishna, J. Biomed. Mater. Res. B, 84, 34 (2008).

    CAS  Google Scholar 

  5. C. S. Ki, S. Y. Park, H. J. Kim, H. M. Jung, K. M. Woo, J. W. Lee, and Y. H. Park, Biotechnol. Lett., 30, 405 (2008).

    Article  CAS  Google Scholar 

  6. V. J. Moncy, T. Vinoy, T. J. Kalonda, R. D. Derrick, and N. Elijah, Acta Biomater., 5, 305 (2009).

    Article  Google Scholar 

  7. R. W. Matthew, B. Richard, and K. Cay, Biomaterials, 27, 3608 (2006).

    Google Scholar 

  8. S. D. Wang, Y. Z. Zhang, G. B. Yin, H. W. Wang, and Z. H. Dong, J. Appl. Polym. Sci., 113, 2675 (2009).

    Article  CAS  Google Scholar 

  9. H. H. Sepideh, S. L. Katja, P. D. Andrew, R. Fady, S. Hunter, M. W. Benjamin, S. Richard, E. B. Ramin, and R. M. William, Biomaterials, 29, 2907 (2008).

    Article  Google Scholar 

  10. J. Yuan, G. Kaustabh, Z. S. Xiao, L. Bingquan, C. S. Jonathan, D. P. Glenn, A. F. C. Richard, and H. R. Miriam, Biomaterials, 27, 3782 (2006).

    Article  Google Scholar 

  11. C. S. Ki, J. W. Kim, J. H. Hyun, K. H. Lee, M. Hattori, D. K. Rah, and Y. H. Park, J. Appl. Polym. Sci., 106, 3922 (2007).

    Article  CAS  Google Scholar 

  12. C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, Polymer, 46, 5094 (2005).

    Article  CAS  Google Scholar 

  13. D. Bin, Y. Xiaoyan, Z. Yi, Z. Yuanyuan, L. Xiulan, Z. Yang, and Y. Kangde, Eur. Polym. J., 42, 2013 (2006).

    Article  Google Scholar 

  14. N. Hemin and W. Chi-Hwa, J. Control. Release, 1210, 111 (2007).

    Google Scholar 

  15. T. Anna, S. Hanna, G. Paul, and W. Pernilla, Biomacromolecules, 9, 1044 (2008).

    Article  Google Scholar 

  16. J. Venugopal, P. Vadgama, K. T. S. Sampath, and S. Ramakrishna, Nanotechnology, 18, 055101 (2007).

    Article  Google Scholar 

  17. W. Patcharaporn, S. Neeracha, P. Prasit, and S. Pitt, Macromol. Biosci., 6, 70 (2006).

    Article  Google Scholar 

  18. M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, and K. H. Lee, J. Biomed. Mater. Res. B, 72B, 117 (2004).

    Article  Google Scholar 

  19. I. K. Kwon, S. Kidoaki, and T. Matsuda, Biomaterials, 26, 3929 (2005).

    Article  CAS  Google Scholar 

  20. M. Simonet, O. D. Scheider, P. Neuenschwander, and W. J. Stark, Polym. Eng. Sci., 47, 2020 (2007).

    Article  CAS  Google Scholar 

  21. A. Thorvaldsson, H. Stenhamre, P. Gatenholm, and P. Walkenstrom, Biomacromolecules, 9, 1044 (2008).

    Article  CAS  Google Scholar 

  22. Y. C. Fu, H. Nie, M. L. Ho, C. K. Wang, and C. H. Wang, Biotechnol. Bioeng., 99, 996 (2008).

    Article  CAS  Google Scholar 

  23. M. V. Jose, V. Thomas, D. R. Dean, and E. Nyairo, Polymer, 50, 3778 (2009).

    Article  CAS  Google Scholar 

  24. S. Sahoo, S. L. Toh, and J. C. H. Goh, J. Biomed. Mater. Res. B, 95B, 19 (2010).

    Article  CAS  Google Scholar 

  25. M. Li, M. J. Mondrinos, X. Chen, M. R. Gandhi, F. K. Ko, and P. I. Lelkes, J. Biomed. Mater. Res. A, 79A, 963 (2006).

    Article  CAS  Google Scholar 

  26. C. S. Ki, E. H. Gang, I. C. Um, and Y. H. Park, J. Membrane Sci., 302, 20 (2007).

    Article  CAS  Google Scholar 

  27. S. Y. Park, C. S. Ki, Y. H. Park, H. M. Jung, K. M. Woo, and H. J. Kim, Tissue Eng. A, 16, 1271 (2010).

    Article  CAS  Google Scholar 

  28. M. Koneracka, M. Muckova, V. Zavisova, N. Tomasovicova, P. Kopcansky, M. Timko, A. Jurikova, K. Csach, V. Kavecansky, and G. Lancz, J. Phys.-Condens. Matter., 20, 1 (2008).

    Article  Google Scholar 

  29. W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, J. Biomed. Mater. Res. A, 67A, 1105 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hwan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gang, E.H., Ki, C.S., Kim, J.W. et al. Highly porous three-dimensional poly(lactide-co-glycolide) (PLGA) microfibrous scaffold prepared by electrospinning method: A comparison study with other PLGA type scaffolds on its biological evaluation. Fibers Polym 13, 685–691 (2012). https://doi.org/10.1007/s12221-012-0685-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0685-8

Keywords

Navigation