Skip to main content
Log in

Fabrication and characterization of dense Chitosan/polyvinyl-alcohol/poly-lactic-acid blend membranes

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Dense membranes of Chitosan (CS)/Poly(vinyl alcohol) (PVA)/Poly(lactic acid) (PLA) blend were successfully fabricated using casting technique. The mechanical properties, moisture regain and water vapor permeability of polymer blend membranes were estimated by tensile test, moisture regain rate and dish method test respectively. The microstructures, morphology, chemical composition and thermal properties were also characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) respectively. Results indicated that there were interactions and good compatibility among CS, PLA and PVA. And the blend membranes have good breaking elongation and slightly decreased breaking strength, and show best moisture regain at the case of CS60 (the content of CS in the blends is 60 %). They also have excellent porous structure, which is beneficial to their air permeability and may also contribute to cell regeneration. With the adding of PVA content, the melting peaks of blend membranes reduce and gradually close to that of PVA, demonstrating that the regularity of CS molecular chain may be destroyed and hydrogen bonds of macromolecules in polymers were newly formed. As a result, solution blending of the three polymers could complement their disadvantages and significantly improve the membrane performance of a single polymer, thus promote the mechanical and biological properties of blend membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Krause and D. R. Paul, Eur. Polym. J., 23, 547 (1987).

    Article  Google Scholar 

  2. D. F. Varnell and M. M. Coleman, Polymer, 26, 22 (1981).

    Google Scholar 

  3. D. F. Varnell, J. P. Runt, and M. M. Coleman, Polymer, 24, 37 (1983).

    Article  CAS  Google Scholar 

  4. E. M. Woo, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci., 32, 3889 (1986).

    Article  CAS  Google Scholar 

  5. S. Agarwal, J. H. Wendorff, and A. Greiner, Polymer, 49, 5603 (2008).

    Article  CAS  Google Scholar 

  6. I.-Y. Kim, S. J. Seo, H. S. Moon, M. K. Yoo, I.-Y. Park, B.-C. Kim, and C.-S. Cho, Biotechnol. Ad., 26, 1 (2008).

    Article  CAS  Google Scholar 

  7. X. Chen, W. J. Li, W. Zhong, Y. H. Lu, and T. Y. Yu, Chem. Res., 19, 300 (1998).

    CAS  Google Scholar 

  8. Z. Li, X. F. Liu, and X. P. Zhuang, J. Appl. Polym. Sci., 84, 2049 (2002).

    Article  CAS  Google Scholar 

  9. H. X. Xu, Y. H. Yan, T. Wan, and S. P. Li, J. Cent. South. Univ. Technol., 38, 433 (2007).

    CAS  Google Scholar 

  10. M. N. V. Ravi Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chem. Rev., 104, 6017 (2004).

    Article  Google Scholar 

  11. W. Y. Liu, X. Liu, C. Yang, and M. Chen, J. Wuxi Univ. Light. Ind., 21, 384 (2002).

    CAS  Google Scholar 

  12. T. Zhao, Y. M. Du, and R. P. Tang, J. Anal. Sci., 18, 100 (2002).

    CAS  Google Scholar 

  13. I. Norimasa, Y. Shin-Tarou, M. Tokifumi, K. Yasuhiko, M. Akio, H. Kazuo, N. Sachiko, M. Nobuhiko, T. Hiroshi, T. Seiichi, S. Masamichi, M. Kenji, and N. Shin-Ichiro, Biomacromol., 5, 33 (2004).

    Google Scholar 

  14. T. Tanabe, N. Okitsu, A. Tachibana, and K. Yamauchi, Biomaterials, 23, 817 (2002).

    Article  CAS  Google Scholar 

  15. K. Ohkawa, H.-G. Chen, H.-K. Kim, T. Watanabe, N. Okitsu, and A. Tachibana, Macromol. Rap. Commun., 25, 1600 (2004).

    Article  CAS  Google Scholar 

  16. W. H. Park, L. Jeong, D. I. Yoo, and S. Hudson, Polymer, 45, 715l (2004).

    Google Scholar 

  17. T. Helya, H. Elizabeth, W. Rainer, and G. Wayne, Int. Nonwov. J., 14, 12 (2005).

    Google Scholar 

  18. Y. S. Zhou, D. Yang, and J. Nie, J. Appl. Polym. Sci., 102, 5692 (2006).

    Article  CAS  Google Scholar 

  19. L. Li, Carbohyd. Res., 34, 374 (2006).

    Article  Google Scholar 

  20. M. Ignatova and K. Starbova, Carbohydr. Res., 34, 2098 (2006).

    Article  Google Scholar 

  21. Y. Z. Zhang, G. B. Yin, J. L. Wu, and L. N. Chang, Synth. Fiber., 35, 30 (2006).

    CAS  Google Scholar 

  22. X. H. Chu, X. L. Shi, Z. Gu, and Y. T. Ding, J. Biomed. Eng., 28, 6 (2009).

    Google Scholar 

  23. X. H. Chu, X. L. Shi, Z. Q. Feng, Z. Z. Gu, and Y. T. Ding, J. Biomed. Eng., 29, 2 (2010).

    Google Scholar 

  24. Y. Xu, X. S. Zhu, Q. Gao, and S. Cheng, Polym. Mater. Sci. Eng., 23, 11 (2007).

    CAS  Google Scholar 

  25. M. Ignatova, N. Manolova, and I. Rashkov, Euro. Polym. J. 43, 1112 (2007).

    Article  CAS  Google Scholar 

  26. S.-Y. Ong, J. Wu, S. M. Moochhala, M.-H. Tan, and L. Jia, Biomater., 29, 4323 (2008).

    Article  CAS  Google Scholar 

  27. S. M. Alipour, M. Nouri, J. Mokhtari, and S. H. Bahrami, Carbohyd. Res., 344, 2496 (2009).

    Article  CAS  Google Scholar 

  28. H. W. Lee, M. R. Karim, H. M. Ji, J. H. Choi, H. D. Ghim, and S. M. Park, J. Appl. Polym. Sci., 113, 1860 (2009).

    Article  CAS  Google Scholar 

  29. T. Galya, V. Sedlarik, I. Kutritka, R. Novotny, J. Sedlarikova, and P. Saha, J. Appl. Polym. Sci., 110, 3178 (2008).

    Article  CAS  Google Scholar 

  30. K. H. Hong, Polym. Eng. Sci., 47, 43 (2007).

    Article  CAS  Google Scholar 

  31. H. R. Kricheldorf, Chemosphere, 43, 4954 (2001).

    Article  Google Scholar 

  32. S. K. Dhirendra, W. R. Kyle, and K. K. Frank, J. Biomed. Mater. Res. Part B, 70, 286 (2004).

    Google Scholar 

  33. L. Durselen, M. Dauner, and H. Hierlemann, J. Biomed. Mater. Res. Part B, 67, 697 (2003).

    Article  Google Scholar 

  34. T. B. Bini, S. J. Gao, and X. Y. Xu, J. Biomed. Mater. Res., 68, 2862295 (2004).

    Google Scholar 

  35. L. Lamke, G. E. Nilsson, and H. L. Reithner, Burns, 3, 159 (1977).

    Article  Google Scholar 

  36. H. T. Xu, J. Zhejiang Univ Technol. Sci., 40, 11 (2006).

    Google Scholar 

  37. M. Z. Hou, J. Zhejiang Univ Technol. Sci., 2, 30 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Xu, W. & Jiang, F. Fabrication and characterization of dense Chitosan/polyvinyl-alcohol/poly-lactic-acid blend membranes. Fibers Polym 13, 571–575 (2012). https://doi.org/10.1007/s12221-012-0571-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0571-4

Keywords

Navigation