Fibers and Polymers

, Volume 13, Issue 4, pp 436–442 | Cite as

PAN-based carbon nanofiber absorbents prepared using electrospinning

  • Ching-Iuan Su
  • Yao-Xian Huang
  • Jhih-Wei Wong
  • Ching-Hsiang Lu
  • Chih-Ming Wang
Article

Abstract

This study takes polyacrylonitrile (PAN) as a raw material for PAN-based nanofiber nonwoven prepared using electrospinning. First we construct a thermal-stable process for the fabrication of oxidized nanofiber nonwovens as the precursor. A semi-open high-temperature erect furnace is then used with steam as the activator, through carbonization and activation processes to prepare carbon nanofiber absorbents continuously. The experiment varies the production rate and activator flow rate to prepare carbon nanofiber absorbents. Experimental results show that carbon nanofiber adsorbents are primarily made up of micropores and mesopores, averaging under 20 Å. Given a production rate of 10–20 cm/min with a matching activator feed rate of 120 ml/min, the specific surface area can reach about 1000 m2/g, producing an adsorption ratio of carbon tetrachloride over 200 %.

Keywords

Electrospinning Activation Carbonization Specific surface area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-I. Su, Z.-Y. Jiang, and C.-H. Lu, Fiber. Polym., 1, 38 (2012).CrossRefGoogle Scholar
  2. 2.
    C. H. Wang, U. S. Patent, 5819350 (1998).Google Scholar
  3. 3.
    P. H. Wang, J. Appl. Polymer. Sci., 67, 1185 (1998).CrossRefGoogle Scholar
  4. 4.
    M. C. Rocco, R. S. William, and P. Alivisiatos, “Nanotechnology Research Directions”, IWGN Workshop Report, NSTC, Sept, 1999.Google Scholar
  5. 5.
    W. Watt and W. Johnson, Nature, 257, 210 (1975).CrossRefGoogle Scholar
  6. 6.
    J. D. López-González, F. Martínez-Víchez, and F. Rodríguez-Reinoso, Carbon, 18, 413 (1980).CrossRefGoogle Scholar
  7. 7.
    K. Gergova, N. Petrov, and S. Eser, Carbon, 32, 693 (1994).CrossRefGoogle Scholar
  8. 8.
    S. Lowell and J. E. Shields, “Powder Surface Area and Porosity”, Chapman and Hall Pub., USA, 1984.CrossRefGoogle Scholar
  9. 9.
    M. J. Muñoz-Guillena, M. J. Illán-Gómez, J. M. Martin-Martínez, A. Linares-Solano, and C. Salinas-Martínez de Lecea, Energy Fuels, 6, 9 (1992).CrossRefGoogle Scholar
  10. 10.
    S. J. Greeg and K. S. W. Sing, “Adsorption Surface Areas and Porosity”, Academic Press, London and New York, 1982.Google Scholar
  11. 11.
    J. W. McBain, J. Am. Chem. Soc., 57, 699 (1935).CrossRefGoogle Scholar
  12. 12.
    E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951).CrossRefGoogle Scholar
  13. 13.
    S. C. Bennett and D. J. Johnson, Carbon, 17, 25 (1979).CrossRefGoogle Scholar
  14. 14.
    M. Balasubramanian, M. K. Jain, S. K. Bhattacharya, and A. S. Abhiraman, J. Mater. Sci., 22, 3864 (1987).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2012

Authors and Affiliations

  • Ching-Iuan Su
    • 1
  • Yao-Xian Huang
    • 1
  • Jhih-Wei Wong
    • 1
  • Ching-Hsiang Lu
    • 1
  • Chih-Ming Wang
    • 1
  1. 1.Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan, R.O.C.

Personalised recommendations