Skip to main content
Log in

Coir fiber reinforced polypropylene composite panel for automotive interior applications

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the internal bond strength of the composites were negatively influenced by increasing coir fiber content. However, the flexural strength, the tensile strength, and the hardness of the composites improved with increasing the coir fiber content up to 60 wt %. The flame retardancy of the composites improved with increasing coir fiber content. The results suggest that an optimal composite panel formulation for automotive interior applications is a mixture of 60 wt % coir fiber, 37 wt % PP powder, and 3 wt % MAPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999).

    Article  CAS  Google Scholar 

  2. P. Chow, R. J. Lambert, C. T. Bowers, N. McKenzie, J. A. Youngquist, J. H. Muehl, and A. M. Kryzsik, “Proceedings of the 2000 International Kenaf Symposium”, p.139, 2000.

  3. R. Rahman, M. Hasan, M. Huque, and N. Islam, J. Reinfor. Plast. Compos., 29, 445 (2010).

    Article  CAS  Google Scholar 

  4. P. V. Joseph, G. Mathew, K. Joseph, S. Thomas, and P. Pradeep, J. Appl. Polym. Sci., 88, 602 (2003).

    Article  CAS  Google Scholar 

  5. A. Arbelaiz, B. G. Cantero, R. Llano-Ponte, A. Valea, and I. Mondragon, Compos. Part A-Appl. S., 36, 1637 (2005).

    Article  Google Scholar 

  6. A. Schirp and J. Stender, Eur. J. Wood Prod., 68, 219 (2010).

    Article  CAS  Google Scholar 

  7. A. K. Mohanty, M. Misra, and L. T. Drzal, “Natural Fibers, Biopolymers and Biocomposites”, p.875, Boca Ranton, Taylor & Francis, 2005.

  8. K. V. Rijswijk, W. D. Brouwer, and A. Beukers, “Natural Fibre Composites”, p.61, FAO Economic and Social Development Department, Rome, Italy, 2001.

    Google Scholar 

  9. R. N. Arancon, “Natural Fiber Production and Food Securtiy: Coir in Asia and the Pacific”, p.63, Asian and Pacific Coconut Community, Jakarta, 2007.

    Google Scholar 

  10. FAO, “International Year of Natural Fibres”, p.5, International Year of Natural Fibres Coordinating Unit, Trade and Markets Division, Rome, 2009.

    Google Scholar 

  11. DIN CEN/TS 15534-1, Wood-plastics Composites (WPC) — Part 1: Test Methods for Characterisation of WPC Materials and Products DIN Deutsches Institut für Normung e.V., Berlin, Germany, 2007.

  12. EN 317, Particleboards and Fiberboards — Determination of Swelling in Thickness After Immersion in Water. European Committee for Standardization, Brussel, Belgium, 1993.

    Google Scholar 

  13. EN 323, Wood-based Panels — Determination of Density, 1993.

  14. EN 310, Determination of Modulus of Elasticity in Bending and Bending Strength, 1993.

  15. EN 319, Particleboards and Fiberboards — Determination of Tensile Strength Perpendicular to the Plane of the Board, 1993.

  16. ASTM D 1037-06a, Standard Test Methods for Evaluating Properties of Wood-based Fiber and Particle Panel Materials, ASTM Int, West Conshohocken, PA, 2006.

    Google Scholar 

  17. ASTM D 2863-10, Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candlelike Combustion of Plastics (oxygen index). ASTM Int, West Conshohocken, PA, 2010.

    Google Scholar 

  18. D. J. Gardner and D. Murdock, “Extrusion of wood plastic composites”, p.5, University of Maine, Maine, 2010.

    Google Scholar 

  19. H. Hargitai, I. Racz, and R. D. Anandjiwala, Thermoplast. Compos. Comp., 21, 165 (2008).

    Article  Google Scholar 

  20. A. Bismarck, A. Askargorta, J. Springer, T. L. B. Wielage, A. S. Ilja, and H. H. Limbach, Polym. Composite, 23, 872 (2004).

    Article  Google Scholar 

  21. DIN CEN/TS 15534-2, Wood-plastics Composites (WPC) — Part 2: Characterisation of WPC Materials. DIN Deutsches Institut für Normung e.V., Berlin, Germany, 2007.

    Google Scholar 

  22. EN 312, Particleboards — Specifications, 2010.

  23. EN 622-5, Fiberboards Specifications — Requirements for Dry Process Boards (MDF), 2009.

  24. N. Ayrilmis, “The Effect of Tree Species on Technological Properties of MDF”, MSc Thesis, Institute of Natural Sciences, Istanbul University, Istanbul, 2000.

    Google Scholar 

  25. M. Karina, H. Onggo, and A. Syampurwadi, J. Biol. Sci., 7, 393 (2007).

    Article  CAS  Google Scholar 

  26. N. Ayrilmis and S. Jarusombuti, J. Compos. Mater., 45, 103 (2011).

    Article  CAS  Google Scholar 

  27. S. T. Georgopoulos, P. A. Tarantili, E. Avgerinos, A. G. Andreopoulos, and E. G. Koukios, Polym. Degrad. Stabil., 90, 303 (2005).

    Article  CAS  Google Scholar 

  28. R. G. Raj, B. V. Kokta, G. Groluleau, and C. Daneault, Pol. Plast. Technol. Eng., 29, 339 (1990).

    Article  CAS  Google Scholar 

  29. J. E. Winandy and A. M. Krzysik, Wood Fiber Sci., 39, 450 (2007).

    CAS  Google Scholar 

  30. A. N. Shebani, A. J. Van Reenen, and M. Meincken, J. Compos. Mater., 43, 1305 (2009).

    Article  CAS  Google Scholar 

  31. S. M. Zabihzadeh, Bioresources, 5, 316 (2010).

    CAS  Google Scholar 

  32. T. M. Maloney, “Modern Particleboard and Dry-Process Fiberboard Manufacturing”, p.255, Miller Freeman Publications, San Francisco, 1977.

    Google Scholar 

  33. M. Chaharmahali, M. Tajvidi, and S. K. Najafi, Polym. Composite, 29, 606 (2008).

    Article  CAS  Google Scholar 

  34. A. K. Bledzki, A. A. Mamun, and O. Faruk, eXPRESS Polym. Lett., 1, 755 (2007).

    Article  CAS  Google Scholar 

  35. A. Nourbakhsh and A. Ashori, Polym. Polym. Compos., 16, 283 (2008).

    Google Scholar 

  36. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).

    Article  CAS  Google Scholar 

  37. A. Ashori and A. Nourbakhsh, Waste Manage., 29, 1291 (2009).

    Article  CAS  Google Scholar 

  38. S. J. Jamil, I. Ahmed, and A. Ibrahim, J. Polym. Res., 13, 315 (2006).

    Article  CAS  Google Scholar 

  39. M. Haque, M. Hasan, S. Islam, and E. Ali, Bioresource Technol., 100, 4903 (2009).

    Article  CAS  Google Scholar 

  40. S. Mishra, J. B. Naik, and Y. P. Patil, Compos. Sci. Technol., 60, 1729 (2000).

    Article  CAS  Google Scholar 

  41. H. P. S. Abdul Khalil, A. M. Siti, and A. K. Mohd Omar, Bioresources, 1, 220 (2006).

    Google Scholar 

  42. R. H. White, Wood Fiber Sci., 12, 113 (1979).

    CAS  Google Scholar 

  43. G. Camino, L. Costa, and E. Casorati, J. Appl. Polym. Sci., 35, 1863 (1998).

    Article  Google Scholar 

  44. B. Li and M. Xu, Polym. Degrad. Stabil., 91, 1380 (2006).

    Article  CAS  Google Scholar 

  45. S. H. Chiu and W. K. Wang, Polymer, 39, 1951 (1998).

    Article  CAS  Google Scholar 

  46. M. T. T. That and J. Denault, “Proceedings of International Conference on Flax and Other Bast Plants”, p.211, Saskatoon, Canada, 2008.

  47. N. M. Stark, R. H. White, S. A. Mueller, and T. A. Osswald, Polym. Degrad. Stabil., 95, 1903 (2010).

    Article  CAS  Google Scholar 

  48. A. Gani and I. Naruse, Renew. Energ., 32, 649 (2007).

    Article  CAS  Google Scholar 

  49. R. A. Susott, Forest Sci., 28, 839 (1982).

    Google Scholar 

  50. E. D. Weil, M. H. Hirschler, N. G. Patel, M. M. Said, and S. Shakir, Fire Mater., 16, 159 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Ayrilmis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayrilmis, N., Jarusombuti, S., Fueangvivat, V. et al. Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polym 12, 919–926 (2011). https://doi.org/10.1007/s12221-011-0919-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-011-0919-1

Keywords

Navigation