Skip to main content
Log in

Manufacturing of twisted continuous PAN nanofiber yarn by electrospinning process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The development of a modified method to produce heat treated twisted nanofibrous yarns using two oppositely metallic spinnerets system is presented. This method allows the production of more uniform, stronger twisted poly acrylonitrile (PAN) yarns. The novelty of this system permits for in-situ heat treating of the nanofiber yarns. The average diameter of twisted nanofiber yarns is 340.65 µm with 5.8 CV%. The values of the initial modulus and stress of heat treated yarns increase from 1.90 GPa and 61.30 MPa in untreated one to 4.51 GPa and 116.56 MPa, respectively. In order to quantify the alignment of the nanofibers Fourier power spectrum (FPS) and image analysis were used. So the treated yarn shows more degree of nanofiber alignments than the untreated one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 89, 3018 (2001).

    Article  CAS  Google Scholar 

  2. P. P. Tsaia, S. H. Gibson, and P. Gibson, J. Electrostatics, 54, 333 (2002).

    Article  Google Scholar 

  3. H. J. Jin, S. Fridrikh, G. C. Rutledge, and D. Kaplan, Biomacromolecules, 3, 1233 (2002).

    Article  CAS  Google Scholar 

  4. J. S. Kim and D. H. Reneker, Polym. Compos., 20, 124 (1999).

    Article  CAS  Google Scholar 

  5. J. Lannutti, D. Reneker, T. Ma, D. Tomasko, and D. Farson, Mater. Sci. Eng.:C, 27, 504 (2007).

    Article  CAS  Google Scholar 

  6. S. Lee and S. Kay Obendorf, Text. Res. J., 77, 696 (2007).

    Article  CAS  Google Scholar 

  7. I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, Synth. Met., 114, 109 (2000).

    Article  CAS  Google Scholar 

  8. A. G. MacDiarmid, W. E. Jones, I. D. Norns, J. Gao, A. T. Johnson, N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, and M. Llaguno, Synth. Met., 119, 27 (2001).

    Article  CAS  Google Scholar 

  9. S. H. Lee, B. C. Ku, and X. Wang, Mat. Res. Soc. Symp. Pro., 708, 403 (2002).

    CAS  Google Scholar 

  10. X. Y. Wang, L. A. Samuelson, and J. Kumar, Mat. Res. Soc. Symp. Pro., 708, 397 (2002).

    CAS  Google Scholar 

  11. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999).

    Article  CAS  Google Scholar 

  12. E. Kenawy, K. Mansfield, G. L. Bowlin, D. G. Simpson, and G. E. Wnek, J. Contr. Release, 81, 57 (2002).

    Article  CAS  Google Scholar 

  13. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 6, 2223 (2003).

    Article  Google Scholar 

  14. J. Doshi and D. H. Reneker, J. Electrostatics, 35, 151 (1995).

    Article  CAS  Google Scholar 

  15. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).

    Article  CAS  Google Scholar 

  16. W. E. Teo and S. Ramakrishna, Nanotechnology, 17, R89 (2006).

    Article  CAS  Google Scholar 

  17. J. Doshi and D. H. Reneker, J. Electrostatics, 35, 151 (1995).

    Article  CAS  Google Scholar 

  18. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002).

    Article  CAS  Google Scholar 

  19. K. J. Shields, M. J. Beckman, G. L. Bowlin, and J. S. Wayne, Tissue Eng., 10, 1510 (2004).

    CAS  Google Scholar 

  20. S. F. Fennessey and R. J. Farris, Polymer, 45, 4217 (2004).

    Article  CAS  Google Scholar 

  21. W. E. Teo, M. Kotaki, X. M. Mo, and S. Ramakrishna, Nanotechnology, 16, 918 (2005).

    Article  CAS  Google Scholar 

  22. W. A. Yee, M. Kotaki, Y. Liu, and X. Lu, Polymer, 48, 512 (2007).

    Article  CAS  Google Scholar 

  23. A. Theron, E. Zussman, and A. L. Yarin, Nanotechnology, 12, 384 (2001).

    Article  Google Scholar 

  24. D. Li, Y. L. Wang, and Y. N. Xia, Nano Lett., 3, 1167 (2003).

    Article  CAS  Google Scholar 

  25. D. Li, Y. L. Wang, and Y. N. Xia, Adv. Mater., 16, 361 (2004).

    Article  Google Scholar 

  26. P. D. Dalton, D. Klee, and M. Moller, Polymer, 46, 611 (2005).

    Article  CAS  Google Scholar 

  27. J. Kameoka, R. Orth, Y. N. Yang, D. Czaplewski, and R. H. G. Mathers, Nanotechnology, 14, 1124 (2003).

    Article  CAS  Google Scholar 

  28. P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase, Nano Lett., 4, 2215 (2004).

    Article  CAS  Google Scholar 

  29. E. P. S. Tan, S. Y. Ng, and C. T. Lim, Biomaterials, 26, 1453 (2005).

    Article  CAS  Google Scholar 

  30. Y. Q. Wu, L. A. Carnell, and R. L. Clark, Polymer, 48, 5653 (2007).

    Article  CAS  Google Scholar 

  31. F. Dabirian, S. Sarkeshik, and A. Kianiha, Current Nanoscience, 5, 318 (2009).

    Article  CAS  Google Scholar 

  32. S. Sarkar, S. Deevi, and G. Tepper, Macromol Rapid Commun, 28, 1034 (2007).

    Article  CAS  Google Scholar 

  33. C. X. Xu, X. W. Sun, B. J. Chen, P. Shum, S. Li, and X. Hu, J. Appl. Phys., 95, 661 (2004).

    Article  CAS  Google Scholar 

  34. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue Engineering, 11, 101 (2005).

    Article  Google Scholar 

  35. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, Polymer, 42, 8163 (2001).

    Article  CAS  Google Scholar 

  36. H. Fong, L. Weidong, C. S. Wang, and R. A. Vaia, Polymer, 43, 775 (2002).

    Article  CAS  Google Scholar 

  37. E. Smit, U. Büttner, and R. D. Sanderson, Polymer, 46, 2419 (2005).

    Article  CAS  Google Scholar 

  38. H. Pan, L. Li, L. Hu, and X. Cui, Polymer, 47, 4901 (2006).

    Article  CAS  Google Scholar 

  39. W. E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara, and S. Ranakrishna, Polymer, 48, 3400 (2007).

    Article  CAS  Google Scholar 

  40. B. K. Gu, M. K. Shin, K. W. Sohn, S. I. Kim, S. J. Kim, S. K. Kim, H. Lee, and J. S. Park, Appl. Phys. Lett., 90, 263902 (2007).

    Article  Google Scholar 

  41. F. Dabirian, Y. Hosseini, and S. A. Hosseini Ravandi, JTI, 98, 237 (2007).

    CAS  Google Scholar 

  42. M. B. Bazbouz and G. K. Stylios, Eur. Polym. J., 44, 1 (2008).

    Article  CAS  Google Scholar 

  43. X. Wang, K. Zhang, M. Zhu, H. Yu, Z. Zhou, Y. Chen, and B. S. Hsiao, Polymer, 49, 2755 (2008).

    Article  CAS  Google Scholar 

  44. C. K. Liu, R. J. Sun, K. Lai, C. Q. Sun, and Y. W. Wang, Mater. Lett., 62, 4467 (2008).

    Article  CAS  Google Scholar 

  45. F. Dabirian and S. A. Hosseini, Fibres & Textiles in Eastern Europe, 17, 45 (2009).

    CAS  Google Scholar 

  46. U. Ali, Y. Q. Zhou, X. G. Wang, and T. Lin, The Journal of the Textile Institute, DOI: 10.1080/00405000.2011.552254.

  47. M. Yousefzadeh, M. Latifi, W. E. Teo, M. Amani-Tehran, and S. Ramakrishna, Polym. Eng. Sci., 51, 323 (2011).

    Article  CAS  Google Scholar 

  48. C. Pirlot, I. Willems, A. Fonseca, J. B. Nagy, and J. Delhalle, Adv. Eng. Mater., 4, 109 (2002).

    Article  CAS  Google Scholar 

  49. A. Aivaskhani and S. A. Hosseini, 6th National Conference on Textile Engineering, Iran, 2007.

  50. A. Ziabicki, “Fundamentals of Fiber Formation”, John Wiley & Sons, USA, 1976.

    Google Scholar 

  51. V. B. Gupta and V. K. Kothari, “Manufactured Fiber Technology”, Chapman & Hall, London, 1997.

    Book  Google Scholar 

  52. J. Zhang, L. Q. Huang, and S. Y. Wang, J. Appl. Polym. Sci., 101, 787 (2006).

    Article  CAS  Google Scholar 

  53. S. F. Fennessey, “Polymer Science and Engineering”, University of Massachusetts Amherst, 2006.

  54. C. M. James, “Acrylic Fiber Technology and Applications”, M. Dekker, 1995.

  55. R. Jalili, M. Morshed, and S. A. Hosseini Ravandi, J. Appl. Polym. Sci., 101, 4350 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hosseini Ravandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabirian, F., Ravandi, S.A.H., Sanatgar, R.H. et al. Manufacturing of twisted continuous PAN nanofiber yarn by electrospinning process. Fibers Polym 12, 610–615 (2011). https://doi.org/10.1007/s12221-011-0610-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-011-0610-6

Keywords

Navigation