Fibers and Polymers

, 12:414 | Cite as

Prediction of various functional finishing treatments using artificial neural networks

  • Eylen Sema Namlıgöz
  • Süleyman Çoban
  • Pelin Gürkan Ünal
Article

Abstract

In this study, in order to produce different water-oil repellent and wrinkle resistant fabrics, 21 different kinds of blended woven fabrics were treated (padded and transfered) with both classic and nano chemicals according to 4 different levels of concentrations. Afterwards, water, oil repellency and wrinkle angle recovery properties of the fabrics were measured. The purpose of this study is to predict these aforementioned functional properties of the fabrics before manufacturing based on the fabric blend, treatment method, used chemicals and chemical concentrations with the help of multi layer perceptron, one of the most popular network architecture. As a result of the study, it can be concluded that multi layer perceptron method can also be used for the classification problems successfully.

Keywords

Finishing Fabric Classification Multi layer perceptron 

References

  1. 1.
    C. Tomasino, “Chemistry & Technology of Fabric Preparation & Finishing”, p.80, Department of Textile Engineering, Chemistry & Science College of Textiles North Carolina State University, Raleigh, North Carolina, 1992.Google Scholar
  2. 2.
    S. Kittinaovarut, PhD. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1998.Google Scholar
  3. 3.
    W. Wei and C. Q. Yang, Text. Res. J., 69, 145 (1999).CrossRefGoogle Scholar
  4. 4.
    I. Tarakçıoǧlu “Tekstil Terbiyesi ve Makineleri”, pp.289–295, Ege Universitesi Tekstil Fakültesi Yayınlar, İzmir 1979.Google Scholar
  5. 5.
    M. Abdulhady, H. Abbas, and S. Nassar, IEEE International Conference on System, Man and Cybernetics, 6, 6 (2002).Google Scholar
  6. 6.
    R. Beltran, L. Wang, and X. Wang, Text. Res. J., 75, 557 (2005).CrossRefGoogle Scholar
  7. 7.
    L. Cheng and D. L. Adams, Text. Res. J., 65, 495 (1995).CrossRefGoogle Scholar
  8. 8.
    J. V. Desai, B. Bandyopadhayay, and C. D. Kane, Proceedings of IEEE International Conference on Industrial Technology, 1, 231 (2000).Google Scholar
  9. 9.
    J. V. Desai, C. D. Kane, and B. Bandyopadhayay, Text. Res. J., 74, 227 (2004).CrossRefGoogle Scholar
  10. 10.
    B. S. Jeon, J. H. Bae, and M. W. Suh, Text. Res. J., 73, 645 (2003).CrossRefGoogle Scholar
  11. 11.
    R. Keshavaraj, R. W. Tock, and D. Haycook, J. Appl. Polym. Sci., 60, 2329 (1996).CrossRefGoogle Scholar
  12. 12.
    C. Kwak, J. A. Ventura, and K. Tofang-Sazi, J. Intell. Manuf., 11, 485 (2000).CrossRefGoogle Scholar
  13. 13.
    H. C. Lien and S. Lee, Neural Computer & Applications, 13, 185 (2004).CrossRefGoogle Scholar
  14. 14.
    P. K. Majumdar and A. Majumdar, Text. Res. J., 74, 652 (2004).CrossRefGoogle Scholar
  15. 15.
    A. Majumdar, P. K. Majumdar, and B. Sarkar, Ind. J. Fibre Text., 30, 19 (2005).Google Scholar
  16. 16.
    R. Rajamanickam, S. M. Hansen, and S. Jayaraman, Text. Res. J., 67, 39 (1997).Google Scholar
  17. 17.
    M. C. Ramesh, R. Rajamanickam, and S. Jayaraman, J. Text. Inst., 86, 459 (1995).CrossRefGoogle Scholar
  18. 18.
    M. E. üreyen and P. Gürkan, Fiber. Polym., 9, 87 (2008).CrossRefGoogle Scholar
  19. 19.
    M. E. üreyen and P. Gürkan, Fiber. Polym., 9, 92 (2008).CrossRefGoogle Scholar
  20. 20.
    P. G. ünal, M. E. üreyen, and H. D. M. Armakan, Second International Conference on Agents and Artificial Intelligence, Valencia, Spain, 22–24 January 2010.Google Scholar
  21. 21.
    H. Li, A. Shi, and B. Zhang, Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2007.Google Scholar
  22. 22.
    N. Daneshvar, A. R. Khataee, and N. Djafarzadeh, J. Hazard. Mater., B137, 1788 (2006).CrossRefGoogle Scholar
  23. 23.
    M. Nasiri, S. M. Taheri, and H. Tarkesh in “Analysis and Design of Intelligent Systems Using Soft Computing Techniques” (P. Melin, O. Castillo, E. G. Ramírez, J. Kacprzyk, and W. Pedrycz, Eds.), pp.608–617, Springer Berlin/Heidelberg, 2007.Google Scholar
  24. 24.
    J. H. Xin, S. Shao, and K. F. Chung, Color. Res. Appl., 25, 425 (2000).CrossRefGoogle Scholar
  25. 25.
    M. Nasiri, M. Shanbeh, and H. Tavanai, Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05).Google Scholar
  26. 26.
    R. F. Yu, H. W. Chen, K. Y. Liu, W. P. Cheng, and P. H. Hsieh, J. Chem. Technol. Biotechnol., 85, 267 (2010).Google Scholar
  27. 27.
    D. Golob, D. P. Osterman, and J. Zupan, Fibres Text. East Eur., 16, 93 (2008).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2011

Authors and Affiliations

  • Eylen Sema Namlıgöz
    • 1
  • Süleyman Çoban
    • 1
  • Pelin Gürkan Ünal
    • 2
  1. 1.Ege UniversityBornova, IzmirTurkey
  2. 2.Department of Textile EngineeringNamık Kemal UniversityCorluTurkey

Personalised recommendations