Fibers and Polymers

, 12:197 | Cite as

Electrospun meta-aramid/cellulose acetate and meta-aramid/cellulose composite nanofibers

  • Lirong Yao
  • Changhwan Lee
  • Jooyong Kim


Meta-aramid/cellulose acetate and meta-aramid/cellulose composite nanofibers were successfully prepared in this paper. There were some new interactions formed among composite ingredients and the beads of nanofibers decreased with increasing the weight proportion of ingredients and concentration of composite solution. The meta-aramid/cellulose acetate composite solution was more favorable for electrospinning because of its lower viscosity and surface tension than meta-aramid/cellulose composite solution, and the uniform nanofibers were obtained when the weight proportion of meta-aramid/cellulose acetate was larger than 1:2, however, it was feasible for meta-aramid/cellulose composite solution when the weight proportion of composite solution exceeded 4:1. The thermal property and mechanical property of composite nanofibers were improved after blending meta-aramid with cellulose acetate or cellulose.


Meta-aramid Cellulose acetate Cellulose Electrospinning Composite nanofibers Thermal property 


  1. 1.
    L. Chen, Z. M. Hu, X. Y. Xie, and Z. F. Liu, Pure Appl. Chem., 43, 1741 (2006).Google Scholar
  2. 2.
    A. Kelly and C. Zweben, Comprehensive Composite Materials, 1, 205(2000).Google Scholar
  3. 3.
    C. Nah and S. H. Han, Polym. Int., 52, 429 (2003).CrossRefGoogle Scholar
  4. 4.
    S. Villar-Rodil, J. I. Paredes, A. Martines-Alonso, and J. M. D. Tascón, J. Therm. Anal. Calorim., 70, 37 (2002).CrossRefGoogle Scholar
  5. 5.
    B. A. P. Ass, G. T. Ciacco, and E. Frollini, Bioresource Technol., 97, 1696 (2006).CrossRefGoogle Scholar
  6. 6.
    B. Morgenstern and H. W. Kammerm, Trends Polym. Sci., 4, 87 (1996).Google Scholar
  7. 7.
    C. L. McCormick, P. A. Callais, and J. B. H. Hutchinson, Macromolecules, 18, 2394 (1985).CrossRefGoogle Scholar
  8. 8.
    A. Frenot, M. W. Henriksson, and P. Walkenstrom, J. Appl. Polym. Sci., 103, 1473 (2007).CrossRefGoogle Scholar
  9. 9.
    I. Daisuke, T. Daisuke, M. Takayoshi, M. Kazuki, H. Hisao, and Y. Hiroshi, Macromol. Biosci., 6, 293 (2006).CrossRefGoogle Scholar
  10. 10.
    C. W. Kim, M. W. Frey, M. Manuel, and Y. L. Joo, Polym. Phys., 43, 1673 (2005).CrossRefGoogle Scholar
  11. 11.
    I. Daisuke, T. Daisuke, and M. Takayoshi, Carbohyd. Res., 343, 919 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Mater. Today, 9, 40 (2006).CrossRefGoogle Scholar
  13. 13.
    S. O. Han, J. H. Youk, K. D. Min, Y. O. Kang, and W. H. Park, Mater. Lett., 62, 759 (2008).CrossRefGoogle Scholar
  14. 14.
    C. L. McCormick, P. A. Callais, and B. H. Hutchinson, Macromolecules, 18, 2394 (1985).CrossRefGoogle Scholar
  15. 15.
    C. L. McCormick, U. S. Patent, 4278790 (1981).Google Scholar
  16. 16.
    H. Lin, L. R. Yao, Y. Y. Chen, and H. Wang, Fiber. Polym., 9, 113 (2008).CrossRefGoogle Scholar
  17. 17.
    W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002).CrossRefGoogle Scholar
  18. 18.
    W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, J. Polym. Sci.: Part B: Polym. Phys., 42, 5 (2004).CrossRefGoogle Scholar
  19. 19.
    J. W. Lee, R. M. Broughton, S. D. Worley, and T. S. Huang, J. Eng. Fiber. Fabr., 2, 25 (2007).Google Scholar
  20. 20.
    D. Zavastin, I. Cretescu, M. Bezdadea, M. Bourceanu, M. Dragan, G. Lisa, I. Mangalagiu, V. Vasic, and J. Savic, Colloids and Surfaces A: Physicochemical Engineering Aspects, 370, 120 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Organic Materials and Fiber EngineeringSoongsil UniversitySeoulKorea

Personalised recommendations