Advertisement

Fibers and Polymers

, Volume 11, Issue 7, pp 1032–1040 | Cite as

Fabrication of electrospun meta-aramid nanofibers in different solvent systems

  • Lirong Yao
  • Changhwan Lee
  • Jooyong Kim
Article

Abstract

Meta-aramid fibers were dissolved in four different solvent systems (DMAc, DMF, NMP, and DMSO) and two kinds of salts (LiCl and CaCl2) were also introduced in this paper. Meta-aramid fibers had a limited solubility in above four solvents, however, fast dissolution could be obtained after adding a certain amount of salt (LiCl or CaCl2). The concentration of salts was found to be an important role in affecting meltaging, dissolving time and viscosity of electrospun solution. Electrospun meta-aramid nanofibers mats were successfully prepared. A series of characterizations had been carried out by using SEM. The results shows the diameter of meta-aramid nanofibers ranging from 100 to 500 nm. The average diameter of the nanofibers increased with the concentration of meta-aramid fiber solution and the salt solution. A preferable morphology of meta-aramid nanofibers could be obtained under LiCl/DMAc system. While the electrospun nanofibers made in CaCl2/DMAc solvent system had a better performance in thermal stability than that prepared in LiCl/DMAc system. Among the four kinds of prepared nanofibers, the nanofibersmat electrospun in LiCl/DMAc system with a concentration of meta-aramid solution at 11 wt% exhibit the best mechanical properties.

Keywords

Meta-aramid Salts Solvent system Electrospinning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. M. Mo, Z. G. Chen, and H. J. Weber, Frontiers of Materials Science in China, 1, 20 (2007).CrossRefGoogle Scholar
  2. 2.
    A. Podgórski, A. Balazy, and L. Grado, Chem. Eng. Sci., 61, 6804 (2006).CrossRefGoogle Scholar
  3. 3.
    C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. T. K. J. Baker, 220th National American Chemical Society Meeting, Washington, D.C., 2000.Google Scholar
  4. 4.
    E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, and C. M. Lukehart, J. Phys. Chem. B, 105, 8097 (2001).CrossRefGoogle Scholar
  5. 5.
    J. M. Du and X. W. Zhang, J. Appl. Polym. Sci., 109, 2935 (2008).CrossRefGoogle Scholar
  6. 6.
    J. Doshi, M. H. Mainz, and G. S. Bhat, Proceedings of the 10th Annual International TANDEC Nonwovens Conference, Nov. 8–10, Knoxville, 2000.Google Scholar
  7. 7.
    C. Nah and S. H. Han, Polym. Int., 52, 429 (2003).CrossRefGoogle Scholar
  8. 8.
    S. Villar-Rodil, J. I. Paredes, A. Martines-Alonso, and J. M. D. Tascón, J. Therm. Anal. Calorim., 70, 37 (2002).CrossRefGoogle Scholar
  9. 9.
    B. Morgenstern and H. W. Kammer, Trends Polym. Sci., 4, 87 (1996).Google Scholar
  10. 10.
    C. L. McCormick, P. A. Callais, and J. B. H. Hutchinson, Macromolecules, 18, 2394 (1985).CrossRefGoogle Scholar
  11. 11.
    X. H. Qin, E. L. Yang, N. Li, and S. Y. Wang, J. Appl. Polym. Sci., 103, 3865 (2007).CrossRefGoogle Scholar
  12. 12.
    W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002).CrossRefGoogle Scholar
  13. 13.
    C. Cheng, Z. Z. Shao, and F. Vollrath, Funct. Mater, 18, 2172 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Department of Organic Materials and Fiber EngineeringSoongsil UniversitySeoulKorea

Personalised recommendations