Fibers and Polymers

, Volume 11, Issue 7, pp 1018–1023 | Cite as

Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid)

  • Seong Yun Kim
  • Kook Seung Shin
  • Seung Hwan Lee
  • Kyeong Wung Kim
  • Jae Ryoun Youn


Although poly(lactic acid) (PLA) possesses many desirable properties such as miscible, reproducible, nontoxic, and biodegradable properties, extremely slow crystallization rate is a weak point in comparison with other commercial thermoplastics. Addition of nucleating agents can be a good method to increase the overall crystallization rate and multi-walled carbon nanotube (MWCNT) is generally known as a good nucleating agent as well as reinforcement. MWCNT reinforced PLA nanocomposites were prepared by melt blending and the unique nucleation and crystallization behaviors of pure PLA and MWCNT/PLA nanocomposites were investigated. Slow homogeneous nucleation and crystallization behavior of the pure PLA and fast heterogeneous crystallization behavior of MWCNT/PLA nanocomposites were observed. Crystallization behavior of MWCNT/PLA nanocomposites was irrespective of cooling rate and the peculiar behavior was due to fast heterogeneous crystallization caused by the nucleating effect of MWCNT and fast PLA chain mobility.


Carbon nanotube Crystallization Differential scanning calorimetry (DSC) Poly(lactic acid) (PLA) Wide angle X-ray diffraction (WAXD) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Yu, K. Dean, and L. Li, Prog. Polym. Sci., 31, 576 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Ulbricht, Polymer, 47, 2217 (2006).CrossRefGoogle Scholar
  3. 3.
    S. S. Ray and M. Bousmina, Prog. Mater. Sci., 50, 962 (2005).CrossRefGoogle Scholar
  4. 4.
    R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).CrossRefGoogle Scholar
  5. 5.
    J. L. Willett and R. L. Shogren, Polymer, 43, 5935 (2002).CrossRefGoogle Scholar
  6. 6.
    A. Sen, M. Bhattacharya, K. A. Stelson, and V. R. Voller, Mat. Sci. Eng. A-Struct., 338, 60 (2002).CrossRefGoogle Scholar
  7. 7.
    K.-S. Kim, I.-J. Chin, J. S. Yoon, H. J. Choi, D. C. Lee, and K. H. Lee, J. Appl. Polym. Sci., 82, 3618 (2001).CrossRefGoogle Scholar
  8. 8.
    L. Wang, R. L. Shogren, and C. Carriere, Polym. Eng. Sci., 40, 499 (2000).CrossRefGoogle Scholar
  9. 9.
    S. Jacobsen, P. H. Degée, and H. G. Fritz, Polym. Eng. Sci., 39, 1311 (1999).CrossRefGoogle Scholar
  10. 10.
    A. Söergård and M. Stolt, Prog. Polym. Sci., 27, 1123 (2002).CrossRefGoogle Scholar
  11. 11.
    Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 21, 117 (2000).CrossRefGoogle Scholar
  12. 12.
    R. Liao, B. Yang, W. Yu, and C. Zhou, J. Appl. Polym. Sci., 104, 310 (2007).CrossRefGoogle Scholar
  13. 13.
    J. Y. Nam, M. Okamoto, H. Okamoto, M. Nakano, A. Usuki, and M. Matsuda, Polymer, 47, 1340 (2006).CrossRefGoogle Scholar
  14. 14.
    K. S. Anderson and M. A. Hillmyer, Polymer, 47, 2030 (2006).CrossRefGoogle Scholar
  15. 15.
    Z. Hong, P. Zhang, C. He, X. Qiu, A. Liu, L. Chen, X. Chen, and X. Jing, Biomaterials, 26, 6296 (2005).CrossRefGoogle Scholar
  16. 16.
    H. Tsuji and Y. Tezuka, Biomacromolecules, 5, 1181 (2004).CrossRefGoogle Scholar
  17. 17.
    V. Maquet, A. R. Boccaccini, L. Pravata, I. Notingher, and R. Jérôme, Biomaterials, 25, 4185 (2004).CrossRefGoogle Scholar
  18. 18.
    J. Y. Nam, M. S, S. Ray, and M. Okanoto, Macromolecules, 36, 7126 (2003).CrossRefGoogle Scholar
  19. 19.
    H. Yamane and K. Sasai, Polymer, 44, 2569 (2003).CrossRefGoogle Scholar
  20. 20.
    H. Urayama, C. Ma, and Y. Kimura, Macromol. Mater. Eng., 288, 562 (2003).CrossRefGoogle Scholar
  21. 21.
    N. C. Bleach, S. N. Nazhat, K. E. Tanner, M. Kellomäki, and P. Törmälä, Biomterials, 23, 1579 (2002).CrossRefGoogle Scholar
  22. 22.
    Z.-G. Wang, X. Wang, B. S. Hsiao, S. Andjeli Jamiolkowski, J. McDivitt, J. Fischer, Jack Zhou, and C. C. Han, Polymer, 42, 8965 (2001).CrossRefGoogle Scholar
  23. 23.
    S. C. Schmidt and M. A. Hillmyer, J. Polym. Sci. Part B: Polym. Phys., 39, 300 (2001).CrossRefGoogle Scholar
  24. 24.
    J. T. Yoon, Y. G. Jeong, S. H. Lee, and B. G. Min, Polym. Advan. Technol., 20, 631 (2009).CrossRefGoogle Scholar
  25. 25.
    J. Y. Kim, H. S. Park, and S. H. Kim, Polymer, 47, 1379 (2006).CrossRefGoogle Scholar
  26. 26.
    S. H. Kim, S. H. Ahn, and T. Hirai, Polymer, 44, 5625 (2003).CrossRefGoogle Scholar
  27. 27.
    W. Xu, M. Ge, and P. He, J. Polym. Sci. Part B: Polym Phys., 40, 408 (2002).CrossRefGoogle Scholar
  28. 28.
    J. Ma, S. Zhang, Z. Qi, G. Li, and Y. Hu, J. Appl. Polym. Sci., 83, 1978 (2002).CrossRefGoogle Scholar
  29. 29.
    T. G. Gopakumar, J. A. Lee, M. Kontopoulou, and J. S. Parent, Polymer, 43, 5483 (2002).CrossRefGoogle Scholar
  30. 30.
    S. Z. D. Cheng and B. Wunderlich, Macromolecules, 21, 789 (1988).CrossRefGoogle Scholar
  31. 31.
    J. Y. Nam, M. Okamoto, H. Okamoto, M. Nakano, A. Usuki, and M. Matsuda, Polymer, 47, 1340 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2010

Authors and Affiliations

  • Seong Yun Kim
    • 1
  • Kook Seung Shin
    • 2
  • Seung Hwan Lee
    • 1
  • Kyeong Wung Kim
    • 3
  • Jae Ryoun Youn
    • 1
  1. 1.Research Institute of Advanced Materials, Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Dongwoo Finechem Co. Ltd.Gyeonggi-DoKorea
  3. 3.Cresin Co. Ltd.Gyungsangbuk-DoKorea

Personalised recommendations