Advertisement

Fibers and Polymers

, Volume 11, Issue 5, pp 732–737 | Cite as

Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester composite siloxane matrix modification

  • S. ErdenEmail author
  • K. Sever
  • Y. Seki
  • M. Sarikanat
Article

Abstract

Enhancement of the mechanical and vibrational properties of glass/polyester composites was aimed via matrix modification technique. To achieve this, unsaturated polyester was modified by incorporation of oligomeric siloxane in the concentration range of 1–3 wt%. Modified matrix composites reinforced with woven roving glass fabric were compared with untreated glass/polyester in terms of mechanical and interlaminar properties by conducting tensile, flexure, and short-beam shear tests. It was found that after incorporation of 3 % oligomeric siloxane into the polyester matrix, the tensile, flexural, and interlaminar shear strength (ILSS) values of the resulting composite increased by 16, 15, and 75 %, respectively. The increases in ILSS as well as in tensile and flexural properties were considered to be an indication of better fiber/matrix interaction as confirmed by SEM fractography images. Furthermore, the effect of oligomeric siloxane incorporation on the vibrational properties of the composites was investigated by experimental modal testing and the natural frequencies of the composites were found to increase with increasing siloxane concentration.

Keywords

Composites Matrix modification Polyester Glass fabrics Mechanical Vibrational 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Zhou, J. K. Kim, and Y. W. Mai, Compos. Sci. Technol., 45, 153 (1992).CrossRefGoogle Scholar
  2. 2.
    L. M. Zhou, J. K. Kim, and Y. W. Mai, Compos. Sci. Technol., 48, 227 (1993).CrossRefGoogle Scholar
  3. 3.
    J. K. Kim and Y. W. Mai, “Engineered Interfaces in Fiber Reinforced Composites”, pp.1–4, Elsevier Science Ltd., Oxford, 1998.CrossRefGoogle Scholar
  4. 4.
    Y. Li and Y. W. Mai, J. Adhes., 82, 527 (2006).CrossRefGoogle Scholar
  5. 5.
    W. Gu, H. F. Wu, S. L. Kampe, and G. Q. Lu, Mater. Sci. Eng., A, 277, 237 (2000).CrossRefGoogle Scholar
  6. 6.
    S. J. Park and T. J. Kim, J. Appl. Polym. Sci., 80, 1439 (2001).CrossRefGoogle Scholar
  7. 7.
    J. F. Feller and Y. Grohens, Composites Part A, 35, 1 (2004).CrossRefGoogle Scholar
  8. 8.
    J. K. Kim, M. L. Sham, and J. Wu, Composites Part A, 32, 607 (2001).CrossRefGoogle Scholar
  9. 9.
    S. J. Park, M. H. Kim, J. R. Lee, and S. Choi, J. Colloid. Interf. Sci., 228, 287 (2000).CrossRefGoogle Scholar
  10. 10.
    S. J. Park and J. S. Jin, J. Polym. Sci. Part B: Polym. Phys., 41, 55 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Gassan and A. K. Bledzki, Composites Part A, 28, 1001 (1997).CrossRefGoogle Scholar
  12. 12.
    K. W. Allen, Int. J. Adhes. Adhes., 13, 67 (1993).CrossRefGoogle Scholar
  13. 13.
    V. M. Fonseca, V. J. Fernandes, L. H. De Carvalho, and J. R. M. D’Almeida, J. Appl. Polym. Sci., 94, 1209 (2004).CrossRefGoogle Scholar
  14. 14.
    L. Suspene, Y. S. Yang, and J. P. Pascault in “Rubber Toughened Plastics” (C. K. Riew and A. J. Kinloch Eds.), pp.163–188, American Chemical Society, Washington, DC, 1993.CrossRefGoogle Scholar
  15. 15.
    A. F. Yee, J. Du, and M. D. Thouless in “Polymer Blends: Performance” (D. R. Paul and C. B. Bucknall Eds.), pp.225–267, John Wiley & Sons, New York, 2000.Google Scholar
  16. 16.
    A. B. Cherian, B. T. Abraham, and E. T. Thachil, J. Appl. Polym. Sci., 100, 449 (2006).CrossRefGoogle Scholar
  17. 17.
    M. Sarikanat, J. Reinf. Plast Compos., 29, 807 (2009).CrossRefGoogle Scholar
  18. 18.
    V. Cecen, M. Sarikanat, Y. Seki, H. Yildiz, and I. H. Tavman, Polym. Compos., 29, 262 (2008).CrossRefGoogle Scholar
  19. 19.
    V. Cecen, M. Sarikanat, Y. Seki, T. Govsa, H. Yildiz, and I. H. Tavman, J. Appl. Polym. Sci., 102, 4554 (2006).CrossRefGoogle Scholar
  20. 20.
    R. F. Gibson, Compos. Sci. Technol., 60, 2769 (2000).CrossRefGoogle Scholar
  21. 21.
    R. Z. Li, L. Ye, and Y. W. Mai, Composites Part A, 28, 73 (1997).CrossRefGoogle Scholar
  22. 22.
    K. Sever, M. Sarikanat, Y. Seki, and I. H. Tavman, Polym. Compos., 30, 1251 (2009).CrossRefGoogle Scholar
  23. 23.
    J. N. Reddy, “Mechanics of Laminated Composite Plates: Theory and Analysis”, CRC Press, Florida, 2004.Google Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringEge UniversityIzmirTurkey
  2. 2.Department of Mechanical EngineeringDokuz Eylul UniversityIzmirTurkey
  3. 3.Department of ChemistryDokuz Eylul UniversityIzmirTurkey

Personalised recommendations