Skip to main content
Log in

The role of Na-montmorillonite on thermal characteristics and morphology of electrospun PAN nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polymer organic-inorganic hybrid nanofibers constitute a new class of materials in which the polymeric nanofibers are reinforced by uniformly dispersed inorganic particles having at least one dimension in nanometer-scale. In the present study, polyacrylonitrile (PAN) and PAN/Na-montmorillonite (PAN/Na-MMT) nanofibers were conducted via electrospinning process. Electrospun PAN and PAN/Na-MMT fibers with the respective mean fiber diameter of about 220 and 160 nm were prepared. The influence of the clay-montmorillonite on the morphology and diameter of nanofibers was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The microscopic techniques propose that the PAN/Na-MMT composite nanofibers show lower mean fiber diameter than the neat PAN nanofibers. Besides, the difference in nanoclay-content has a slight effect on the distribution of fibers diameter. Thermogravimetric analysis (TGA) results suggest that introduction of clay-nanomaterials improves the thermal characteristics of fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Friedrich, S. Fakirov, and Z. Zhang, “Polymer Nanocomposites from Nano to Macro-scale”, Springer Science, USA, 2005.

    Google Scholar 

  2. T. Pinniavaia and G. Beall, “Polymer-clay Nanocomposites”, Wiley & Science, NewYork, 2001.

    Google Scholar 

  3. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, “An Introduction to Electrospinning and Nanofibers”, Word Scientific, USA, 2005.

    Book  Google Scholar 

  4. Y. Gogotosi, “Nanotubs and Nanofibers”, Drexel University, Philadelphia. Pennsylvania, USA, Taylor & Francis, 2006.

    Google Scholar 

  5. G. C. Rutledge and S. V. Fridrikh, Adv. Drug Delivery Rev., 59, 1384 (2007).

    Article  CAS  Google Scholar 

  6. Z. Chen, X. Mo, and F. Qing, Mater. Lett., 61, 3490 (2007).

    Article  CAS  Google Scholar 

  7. K. M. Manesh, P. Santhosh, A. Gopalan, and K. P. Lee, Anal. Biochem., 360, 189 (2007).

    Article  CAS  Google Scholar 

  8. N. Ristolainen, P. Heikkila, A. Harlin, and J. Seppa, Macromol. Mater. Eng., 291, 114 (2006).

    Article  CAS  Google Scholar 

  9. L. Li, L. M. Bellan, H. G. Craighead, and M. W. Frey, Polymer, 47, 6208 (2006).

    Article  CAS  Google Scholar 

  10. H. Fong, W. Liu, C. S. Wang, and R. A. Vaia, Polymer, 43, 775 (2002).

    Article  CAS  Google Scholar 

  11. R. W. Tuttle, A. Chowdury, E. T. Bender, R. D. Ramsier, J. L. Rapp, and M. P. Espe, Appl. Surf. Sci., 254, 4925 (2008).

    Article  CAS  Google Scholar 

  12. J. H. Hong, E. H. Jeong, H. S. Lee, D. H. Baik, S. W. Seo, and J. H. Youk, J. Polym. Sci., Part B: Polym. Phys., 43, 3171 (2005).

    Article  CAS  Google Scholar 

  13. Y. Yang, H. Wang, X. Lu, Y. Zhao, X. Li, and C. Wang, Mater. Sci. Eng., 140, 48 (2007).

    Article  CAS  Google Scholar 

  14. Y. H. Lee, J. H. Lee, I. G. An, C. Kim, D. S. Lee, Y. K. Lee, J. D. Nam, M. Li, G. Han, and B. Yang, Electrochem. Commun., 10, 880 (2008).

    Article  Google Scholar 

  15. Y. H. Lee, J. H. Lee, I. G. An, C. Kim, D. S. Lee, Y. K. Lee, and J. D. Nam, Biomaterials, 26, 3165 (2005).

    Article  CAS  Google Scholar 

  16. D. Ratna, S. Divekar, S. Patchaiappan, A. B. Samui, and B. C. Chakraborty, Polym. Int., 56, 900 (2007).

    Article  CAS  Google Scholar 

  17. F. Dabirian, Y. Hosseini, and S. A. H. Ravandi, J. Text. Inst., 98, 237 (2007).

    CAS  Google Scholar 

  18. R. A. Vaia, T. J. Pinniavaia, and G. W. Beall, Editors, “Polymer Clay Nanocomposite”, Wiley, New York, 2000.

    Google Scholar 

  19. L. Lei, M. B. Leon, G. C. Harold, and W. F. Margaret, Polymer, 47, 6208 (2006).

    Article  Google Scholar 

  20. M. Wang, A. J. Hsieh, and G. C. Rutledge, Polymer, 46, 3407 (2005).

    Article  CAS  Google Scholar 

  21. D. Jin, Y. Huang, X. Liu, and Y. Yu, J. Mater. Sci., 39, 3365 (2004).

    Article  CAS  Google Scholar 

  22. J. Zhao, L. Wang, X. He, C. Wan, and C. Jiang, Electroanchim. Acta, 53, 7048 (2008).

    Article  CAS  Google Scholar 

  23. W. G. Jeffrey, L. J. Catheryn, B. M. Alexander, and H. J. Richard, Chem. Mater., 12, 1866 (2000).

    Article  Google Scholar 

  24. Y. Q. Zhang, J. H. Lee, J. M. Rhee, and K. Y. Rhee, Compos. Sci. Technol., 64, 1383 (2004).

    Article  CAS  Google Scholar 

  25. T. Hailin, H. Jing, M. Guiping, X. Ming, and N. Jun, Polym. Degrad. Stab., 93, 369 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahed Shami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shami, Z., Sharifi-Sanjani, N. The role of Na-montmorillonite on thermal characteristics and morphology of electrospun PAN nanofibers. Fibers Polym 11, 695–699 (2010). https://doi.org/10.1007/s12221-010-0695-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-0695-3

Keywords

Navigation