Skip to main content
Log in

The mechanism and/or prediction of the breaking elongation of polyester/viscose blended open-end rotor spun yarns

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, an analysis on the breaking elongation mechanism of the polyester/viscose blended open-end rotor spun yarns has been carried out. In addition, a back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the breaking elongation of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. In conclusion, ANN and statistical model both have given satisfactory predictions; however, the predictions of ANN gave relatively more reliable results than those of statistical models. Since the prediction capacity of statistical models is also obtained as satisfactory, it can also be used for breaking elongation (%) prediction of yarns because of its simplicity and non-complex structure. In addition, it is also found in this study that yarn count, rotor speed and breaking elongation of polyester-viscose fibers and the blend ratios of these fibers in the yarn have major effects on yarn breaking elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Ya, J. S. Guo, and Y. Y. Zhou, Text. Res. J., 75(3), 274 (2005).

    Article  Google Scholar 

  2. I. Frydrch, G. Dziworska, and M. Matusiak, Fibres Text. East. Eur., 8(2), 42 (2000).

    Google Scholar 

  3. J. Stepanovic, K. Zafirova, Z. Milutinovic, and V. Petrovic, Maced. J. Chem. Chem. Eng., 26(1), 45 (2007).

    CAS  Google Scholar 

  4. L. J. Strumillo, D. Cyniak, J. Czelkalkski, and D. Jackowski, Fibres Text. East. Eur., 15(1), 24 (2007).

    Google Scholar 

  5. D. Radjojevic, M. Stamenkovic, J. Stepanovic, and B. Antic, Fibres Text. East. Eur., 9(1), 20 (2001).

    Google Scholar 

  6. Y. Huh, Y. R. Kim, and W. Oxenham, Text. Res. J., 72(2), 156 (2002).

    Article  CAS  Google Scholar 

  7. A. Kumar, S. M. Ishatiaque, and K. R. Salhotra, J. Text. Inst., 97(5), 385 (2006).

    Article  Google Scholar 

  8. A. Majumdar, P. K. Majumdar, and B. Sarkar, Ind. J. Fibre Text. Res., 30(1), 19 (2005).

    CAS  Google Scholar 

  9. J. I. Mwasiagi, X. B. Huang, and X. H. Wang, Fiber. Polym., 9(1), 80 (2008).

    Article  Google Scholar 

  10. P. K. Majumdar and A. Majumdar, Text. Res. J., 74(7), 652 (2004).

    Article  CAS  Google Scholar 

  11. K. P. S. Cheng and H. L. I. Lam, Text. Res. J., 73(2), 161 (2003).

    Article  CAS  Google Scholar 

  12. M. Topalbekiroğlu, E. Hosrafoğlu Çoruh, M. E. İnce and H. K. Kaynak, Tekstil ve Konfeksiyon, 17(2), 104 (2007), (in Turkish).

    Google Scholar 

  13. M. E. Üreyen and P. Gürkan, Fiber. Polym., 9(1), 87 (2008).

    Article  Google Scholar 

  14. M. E. Üreyen and P. Gürkan, Fiber. Polym., 9(1), 92 (2008).

    Article  Google Scholar 

  15. A. A. Gharehaghaji, M. Shanbeh, and M. Palhang, Text. Res. J., 77(8), 565 (2007).

    Article  CAS  Google Scholar 

  16. L. Cheng and D. L. Adams, Text. Res. J., 65(9), 495 (1995).

    Article  CAS  Google Scholar 

  17. M. C. Ramesh, R. Rajamanickam, and S. Jayaraman, J. Text. Inst., 86(3), 459 (1995).

    Article  Google Scholar 

  18. N. Shanmugam, S. K. Chattopahyay, M. V. Vivekanandan, and H. V. Sreenivasamurthy, Ind. J. Fibre Text. Res., 26(4), 372 (2001).

    CAS  Google Scholar 

  19. O. Demiryürek and E. Koç Fiber. Polym., 10(2), 237 (2009).

    Article  Google Scholar 

  20. B. J. Collier and P. G. Tortora, “Understanding Textiles”, Prentice Hall, pp.267–268, NJ, USA, Sixth Edition, 2001.

  21. O. Demiryürek, Extruders Used in Synthetic Fibre Production and Design Basis of Extruder-Pump System, MSc Thesis, University of Çukurova, 2004 (in Turkish).

  22. A. K. Soe, M. K. Takahashi, M. Nakajima, T. Matsuo, and T. Matsumoto, Text. Res. J., 74(9), 819 (2004).

    Article  CAS  Google Scholar 

  23. C. A. Lawrence, “Fundamentals of Spun Yarn Technology”, CRC Press, pp.373–374, USA, 2003.

  24. K. Shihab, J. Comp. Sci., 2(9), 710 (2006).

    Article  Google Scholar 

  25. C. F. J. Kuo, K. I. Hsiao, and Y. S. Wu, Text. Res. J., 74(9), 840 (2004).

    Article  CAS  Google Scholar 

  26. D. C. Montgomery, “Design and Analysis of Experiments”, John Wiley & Sons, Inc., pp.472–484, USA, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdem Koç.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiryürek, O., Koç, E. The mechanism and/or prediction of the breaking elongation of polyester/viscose blended open-end rotor spun yarns. Fibers Polym 10, 694–702 (2009). https://doi.org/10.1007/s12221-010-0694-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-0694-4

Keywords

Navigation