Skip to main content
Log in

The effect of temperature and water on the mechanical properties of wool fibres investigated with different experimental methods

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The tensile and durability properties of single wool fibres were investigated with tensile testing method and lever equipment giving the results examined by Zhurkov’s kinetic equation under the effects of temperatures and water. Moreover, Differential Scanning Calorimetry (DSC) method was applied to determine denaturation and degradation peaks and corresponding enthalpies of wool fibre. It was shown that with increasing temperature, tensile properties and durability of the wool fibres decreased considerably. A great decrease on tensile properties was seen at temperatures higher than ∼200 °C after which a denaturation doublet of α-keratin and a wide thermal degradation peak were observed in DSC diagrams. Moreover, the wet fibres obtained lower tensile characteristics except breaking extension which increased by 9 % and 20 % for the fibres kept in water for one h and one month, respectively. However, the breaking extension of the fibre tested in water increased greatly by 73 % which indicates the important role of water molecules on the intermolecular interactions during stretching. The weakening effect of water molecules on the structure was also shown by DSC result of wet wool fibres at which the thermal degradation enthalpy of α-keratin and other histological components decreased by 22 %. The changes of the tensile and durability characteristics of wool fibres were compared and discussed in detail based on Zhurkov’s equation and intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Johnston, F. M. Kelly, J. Moraes, T. Borrmann, and D. Flynn, Curr. Appl Phys., 6, 587 (2006).

    Article  Google Scholar 

  2. A. Aluigi, C. Vineis, A. Ceria, and C. Tonin, Composites: Part A, 39, 126 (2008).

    Article  Google Scholar 

  3. A. S. Blicblau, R. S. P. Coutts, and A. Sims, J. Mater. Sci. Lett., 16, 1417 (1997).

    Article  CAS  Google Scholar 

  4. A. Aluigi, A. Varesano, A. Montarsolo, C. Vineis, F. Ferrero, G. Mazzuchetti, and C. Tonin, J. Appl. Polym. Sci., 104, 863 (2007).

    Article  CAS  Google Scholar 

  5. M. Feughelman, J. Appl. Polym. Sci., 83, 489 (2002).

    Article  CAS  Google Scholar 

  6. F.-J. Wortmann and H. Deutz, J. Appl. Polym. Sci., 68, 1991 (1998).

    Article  CAS  Google Scholar 

  7. M. Elices and J. Llorca, “Fiber Fracture”, p.337, Elsevier Sci. Ltd., Oxford, UK, 2002.

    Google Scholar 

  8. M. Feughelman, Text. Res. J., 29, 223 (1959).

    Article  Google Scholar 

  9. J. W. S. Hearle, Int. J. Biological Macromolecules, 27, 123 (2000).

    Article  CAS  Google Scholar 

  10. B. M. Chapman, Text. Res. J., 39, 1102 (1969).

    CAS  Google Scholar 

  11. M. Feughelman, Text. Res. J., 64, 236 (1994).

    Article  CAS  Google Scholar 

  12. F.-J. Wortmann and H. Zahn, Text. Res. J., 64(12), 737 (1994).

    Article  CAS  Google Scholar 

  13. H. Liu and W. Yu, J. Appl. Polym. Sci., 103, 1 (2007).

    Article  Google Scholar 

  14. O. Ahumada, M. Cocca, G. Gentile, and E. Martuscelli, Text. Res. J., 74(11), 1001 (2004).

    Article  CAS  Google Scholar 

  15. M. Feughelman and M. S. Robinson, Text. Res. J., 41(6), 469 (1971).

    Article  Google Scholar 

  16. G. D. Danilatos and R. J. Postle, J. Macromol. Sci., Phys. B, 19(1), 153 (1981).

    Article  Google Scholar 

  17. A. R. Haly and J. W. Snaith, Text. Res. J., 40(2), 142 (1970).

    Article  CAS  Google Scholar 

  18. B. M. Chapman, J. Text. Inst., 64(6), 312 (1973).

    Article  CAS  Google Scholar 

  19. W. E. Morton and J. W. S. Hearle, “Physical Properties of Textile Fibers”, 3rd Ed., pp.274–305, The Textile Institute, Manchester, 1997.

    Google Scholar 

  20. A. M. Manich, J. Carilla, S. Vilchez, M. D. de Castellar, P. Oller, and P. Erra, J. Therm. Anal. Calorim., 82, 119 (2005).

    Article  CAS  Google Scholar 

  21. M. Marti, R. Ramirez, A. M. Manic, L. Coderch, and J. L. Parra, J. Appl. Polym. Sci., 104, 545 (2007).

    Article  CAS  Google Scholar 

  22. F.-J. Wortmann, M. Stapels, R. Elliott, and L. Chandra, Biopolymers, 81, 371 (2006).

    Article  CAS  Google Scholar 

  23. J. Cao, Thermochemica Acta, 335, 5 (1999).

    Article  CAS  Google Scholar 

  24. B. Aksakal, Ph.D. Dissertation, YTUIST, Istanbul, 2007.

  25. C. Yumusak and V. Alekberov, Fiber. Polym., 9(1), 15 (2008).

    Article  CAS  Google Scholar 

  26. V. R. Regel, A. I. Slutsker, and E. E. Tomasevskii, “Kinetic Nature of Strenght of Solids”, pp.50–61, Nauka, Moscow, 1974 (in Russian).

    Google Scholar 

  27. A. Tager, “Physical Chemistry of Polymers” (English Translation), pp.156–158, Mir Publishers, New York, 1978.

    Google Scholar 

  28. B. P. Konstantinov, Soviet Physics Uspekhi, 8(5), 800 (1966).

    Article  Google Scholar 

  29. R. Chang, “Physical Chemistry of the Chemical and Biophysical Sciences”, pp.669–688, Williams College, Sausalito CA., 2000.

    Google Scholar 

  30. B. Mölting, “Protein Folding Kinetics, Biophysical Methods”, 2nd Ed., pp.17–25, Springer-Verlag, Berlin Heidelberg, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baki Aksakal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksakal, B., Alekberov, V. The effect of temperature and water on the mechanical properties of wool fibres investigated with different experimental methods. Fibers Polym 10, 673–680 (2009). https://doi.org/10.1007/s12221-010-0673-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-0673-9

Keywords

Navigation