Fibers and Polymers

, Volume 11, Issue 1, pp 60–66 | Cite as

Mechanical properties of denim fabric reinforced poly(lactic acid)

  • Jung Tae Lee
  • Myung Wook Kim
  • Young Seok Song
  • Tae Jin Kang
  • Jae Ryoun Youn
Article

Abstract

Denim, a twilled cotton fabric, was used to enhance the mechanical and thermal properties of poly(lactic acid) (PLA). The denim fabric reinforced composites with different numbers of denim layers were fabricated by using a hand layup method. The impact, tensile, and dynamic mechanical properties of the composites were observed with increasing denim layers to examine the reinforcing effect of denim fabrics. Numerical analysis was carried out to model the elastic modulus of the composite by using a commercial software. Three-dimensional geometry of the denim fabric reinforced PLA composite was generated through a CAD program, and the elastic modulus was calculated by applying uniform deformation on one surface. The impact strength, tensile strength, and thermal properties of the composites were improved by piling denim fabrics. The denim fabric reinforced composites exhibited outstanding impact strength due to the retarded crack propagation as well as large energy dissipation. The 3 layer denim reinforced composite showed best results among all specimens, and its impact strength, tensile strength, and tensile modulus were measured to be 82 J/m, 75.76 MPa, and 4.65 GPa, respectively. The PLA/denim composites have good mechanical properties and can substitute traditional composites such as glass fiber or carbon fiber reinforced composites.

Keywords

Green composite PLA Denim Tensile modulus Impact strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.-C. Albertsson and S. J. Huang, “Degradable Polymers, Recycling, and Plastics Waste Management”, pp.1–6, Marcel Dekker Inc., New York, 1995.Google Scholar
  2. 2.
    M. Vert, G. Schwarch, and J. Coudane, J. Macromol. Sci. Pure Appl. Chem., A32, 787 (1995).Google Scholar
  3. 3.
    E. Bodros, I. Pillin, N. Montrelay, and C. Baley, Compos. Sci. Technol., 67, 462 (2007).CrossRefGoogle Scholar
  4. 4.
    K. Oksman, M. Skrifcars, and J. F. Selin, Compos. Sci. Technol., 63, 1317 (2003).CrossRefGoogle Scholar
  5. 5.
    B. Bax and J. Mussig, Compos. Sci. Technol., 68, 1601 (2008).CrossRefGoogle Scholar
  6. 6.
    R. Hu and J.-K. Lim, J. Compos. Mater., 41, 13 (2007).CrossRefGoogle Scholar
  7. 7.
    D. Plackett, T. L. Andersen, W. B. Pedersen, and L. Nielsen, Compos. Sci. Technol., 63, 1287 (2003).CrossRefGoogle Scholar
  8. 8.
    M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Sci. Technol., 68, 424 (2008).CrossRefGoogle Scholar
  9. 9.
    S. Ochi, Mech. Mater., 40, 446 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Avella, G. Bogoeva-Gaceva, A. Buzarovska, M. E. Errico, G. Gentile, and G. Anita, J. Appl. Polym. Sci., 108, 3542 (2007).CrossRefGoogle Scholar
  11. 11.
    D. Cho, J. Seo, H. Lee, C. Cho, S. Han, and W. Park, Adv. Compos. Mater., 16, 299 (2007).CrossRefGoogle Scholar
  12. 12.
    S.-H. Lee and S. Wang, Compos. Part A, 37, 80 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Gomes, T. Matsuo, K. Goda, and J. Ohgi, Compos. Part A, 38, 1811 (2007).CrossRefGoogle Scholar
  14. 14.
    A. Bourmaud and S. Pimbert, Compos. Part A, 39, 1444 (2008).CrossRefGoogle Scholar
  15. 15.
    S. M. Lee, D. Cho, W. H. Park, S. G. Lee, S. O. Han, and L. T. Drzal, Compos. Sci. Technol., 65, 647 (2005).CrossRefGoogle Scholar
  16. 16.
    J. Cao, R. Akkeerman, P. Boisse, J. Chen, H. S. Cheng, E. F. de Graaf, J. L. Gorczyca, P. Harrison, G. Hivet, J. Launay, W. Lee, L. Liu, S. V. Lomov, A. Long, E. de Luycker, F. Morestin, J. Padvoiskis, X. Q. Peng, J. Sherwood, Tz. Stoilova, X. M. Tao, I. Verpoest, A. Williems, J. Wiggers, T. X. Yu, and B. Zhu, Compos. Part A, 39, 1037 (2008).CrossRefGoogle Scholar
  17. 17.
    E. T. N. Bisanda and M. P. Ansell, J. Mater. Sci., 27, 1690 (1992).CrossRefGoogle Scholar
  18. 18.
    M. Jacob, S. Thomas, and K. T. Varughese, J. Compos. Mater., 40, 16 (2006).CrossRefGoogle Scholar
  19. 19.
    S. Chabba and A. N. Netravali, JSME Int. J., 47, 4 (2004).CrossRefGoogle Scholar
  20. 20.
    A. K. Mohanty, M. A. Khan, and G. Hinrichsen, Compos. Sci. Technol., 60, 1115 (2000).CrossRefGoogle Scholar
  21. 21.
    R. G. H. Siu and E. T. Reese, Bot. Rev., 19, 377 (1953).CrossRefGoogle Scholar
  22. 22.
    A. B. Comsol, “COMSOL Multiphysics User’s Guide”, COMSOL AB, Burlington, MA, USA, 2005.Google Scholar
  23. 23.
    P. Kennedy, “Flow Analysis Reference Manual”, Moldflow Pty. Ltd., Australia, 1993.Google Scholar
  24. 24.
    L. D. Peel and D. W. Jensen, J. Compos. Mater., 35, 96 (2001).CrossRefGoogle Scholar
  25. 25.
    A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999).CrossRefGoogle Scholar
  26. 26.
    M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Sci. Technol., 66, 1813 (2006).CrossRefGoogle Scholar
  27. 27.
    A. K. Rana, A. Mandal, and S. Bandyopadhyay, Compos. Sci. Technol., 63, 801 (2003).CrossRefGoogle Scholar
  28. 28.
    J. L. Thomason and M. A. Vlug, Compos. Part A, 27A, 277 (1997).CrossRefGoogle Scholar
  29. 29.
    N. J. Lee and J. Jang, Compos. Part A, 30, 815 (1999).CrossRefGoogle Scholar
  30. 30.
    X. Huang and A. Netravali, Compos. Sci. Technol., 67, 2005 (2007).CrossRefGoogle Scholar
  31. 31.
    E. S. De Medeiros, J. A. M. Agnelli, K. Joseph, L. H. De Carvalho, and L. H. C. Mattoso, Polym. Compos., 26, 1 (2005).CrossRefGoogle Scholar
  32. 32.
    M. S. Huda, A. K. Mohanty, L. T. Drzal, L. T. E. Schut, and M. Misra, J. Mater. Sci., 40, 4221 (2005).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2010

Authors and Affiliations

  • Jung Tae Lee
    • 1
  • Myung Wook Kim
    • 1
  • Young Seok Song
    • 2
  • Tae Jin Kang
    • 1
  • Jae Ryoun Youn
    • 1
  1. 1.Research Institute of Advanced Materials (RIAM), Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Fiber System EngineeringDankook UniversityGyeonggi-doKorea

Personalised recommendations