Skip to main content
Log in

Intrinsic differences of sensory analysis from instrumental evaluation on fabric softness by lateral compression

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

All kinds of instrumental testing methods have been attempted to substitute for sensory analysis of fabric softness, however, the prediction performance is poor. This alone necessitates a deep investigation and understanding of the difference between sensory analysis and instrumental testing under the comparable constrained conditions. By establishing an equivalent biomechanical model to the handling manner in which human fingers sense lateral compression properties of fabric, the mechanistic principle of sensory evaluation on fabric softness property is explored and compared with instrumental testing principle by two proposed indexes, namely the mechanical sensitivity of touch receptors and the sensory sensitivity of human tactile system. The results show that the mechanical sensitivity of human touch receptors leads to the intrinsic difference of sensory analysis from instrumental test on fabric softness by lateral compression. The mechanical sensitivity monotonously changes with the scaling coefficients and the stiffness coefficients of quasi-static and nonlinear compression deformation characterizing both fabric and human skin. The sensory sensitivity depends on both the mechanical sensitivity and the ability of human central system to interpret the information from the peripheral nervous system. The conclusion is that the two-level sensitivity leads to the intrinsic difference between sensory analysis and instrumental evaluation on fabric softness by lateral compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hollins, Percept. Psychophys., 62(8), 1534 (2000).

    CAS  Google Scholar 

  2. D. Picard, C. Dacremont, and D. Valentin, Acta Psychologica, 114, 165 (2003).

    Article  Google Scholar 

  3. Y. Chen, B. Collier, and P. Hu, Text. Res. J., 70(10), 443 (2000).

    Article  CAS  Google Scholar 

  4. D. P. Bishop, Text. Prog., 26(3), 1 (1995).

    Article  Google Scholar 

  5. M. Mitsuo, J. Text. Eng., 52(1), 1 (2006).

    Article  Google Scholar 

  6. A. Giboreau, S. Navarrro, and P. Faye, Food Quality and Preference, 12(5), 311 (2001).

    Article  Google Scholar 

  7. M. A. Srinivasan and R. H. LaMotte in “Information Processing in the Somatosensory System” (O. Franzén and J. Westman Eds.), pp.123–135, Basel, 1996.

  8. S. J. Lederman and R. L. Klatzky, Cognitive Psychol., 19, 342 (1987).

    Article  CAS  Google Scholar 

  9. H. M. Elder, S. Fisher, and K. Armstrong, J. Text. Inst., 75(1), 37 (1984).

    Article  Google Scholar 

  10. K. Dandekar, B. I. Raju, and M. A. Srinivasan, ASME J. Biomech. Eng., 125(5), 682 (2003).

    Article  Google Scholar 

  11. A. P. Sripati, S. J. Bensmaia, and K. O. Johnson, J. Neurophysiol, 95(6), 3852 (2006).

    Article  Google Scholar 

  12. G. Robles-De-La-Torre and V. Hayward, Nature, 412(26), 445 (2001).

    Article  CAS  Google Scholar 

  13. Q. Wang and V. Hayward, ACM Transactions on Applied Perception, 5(2), 1 (2008).

    Article  CAS  Google Scholar 

  14. N. N. Mohsenin and J. P. Mittal, J. Text. Stud., 8(4), 395 (1977).

    Article  Google Scholar 

  15. K. L. Johnson, “Contact Mechanics”, Chap. 4, Cambridge University Press, UK, 1995.

    Google Scholar 

  16. D. L. Jindrich, Z. Yanhong, and B. Theodore, J. Biomech., 36(4), 497 (2003).

    Article  Google Scholar 

  17. D. T. Pawwluk and R. D. Howe, ASME J. Biomech. Eng., 121(2), 178 (1999).

    Article  Google Scholar 

  18. C. Breugnot, M. A. Bueno, and E. Ribot-Ciscar, Melliand International, 7(4), 314 (2006).

    Google Scholar 

  19. S. Lee, M. Kamijo, and T. Nishimatsu, Sen’i Gakkaishi, 59(9), 57 (2003).

    Google Scholar 

  20. N. G. Abbotti, Text. Res. J., 21(6), 435 (1961).

    Article  Google Scholar 

  21. M. A. Muniak, S. Ray, and S. S. Hsiao, J. Neurosci., 27(43), 11687 (2007).

    Article  CAS  Google Scholar 

  22. K. O. Johnson, S. S. Hsiao, and T. Yoshioka, The Neuroscientist, 8(2), 111 (2002).

    Article  Google Scholar 

  23. B. Martinac, J. Cell Sci., 117(12), 2449 (2004).

    Article  CAS  Google Scholar 

  24. M. Peleg and O. H. Campanella, Percept. Psychophys., 44(5), 451 (1988).

    CAS  Google Scholar 

  25. R. Harper and S. S. Stevens, Quarterly Journal of Experimental Psychology, 16, 204 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Ding, X., Wang, R. et al. Intrinsic differences of sensory analysis from instrumental evaluation on fabric softness by lateral compression. Fibers Polym 10, 371–378 (2009). https://doi.org/10.1007/s12221-009-0371-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-009-0371-7

Keywords

Navigation