Fibers and Polymers

, Volume 10, Issue 3, pp 310–314 | Cite as

Copper metallization of poly(ethylene terephthalate) fabrics via intermediate polyaniline layers

  • Nowoo Park
  • Il Won Kim
  • Jooyong Kim


Poly(ethylene terephthalate) fabrics were metallized through electroless plating of copper. The copper plating was performed on palladium-decorated polyaniline surfaces, and polyaniline was present as an intermediate layer on fabrics to facilitate palladium formation. Different oxidation states of polyaniline were tested in their efficacy in Pd (II) reduction and subsequent Cu plating. X-ray photoelectron spectroscopy was used to monitor the surface changes along the metallization procedure, and surface resistance was measure to probe the electrical properties of the metallized fabrics.


Metallized fabric Poly(ethylene terephthalate) Polyaniline Electroless plating Surface resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Angelopoulos, IBM J. Res. & Dev., 45, 57 (2001).CrossRefGoogle Scholar
  2. 2.
    E. A. Kim, E. G. Han, K. W. Oh, and J. G. Na, J. Appl. Phy., 87, 4984 (2000).CrossRefGoogle Scholar
  3. 3.
    J. I. Duffy (Ed.), “Electroless and Other Nonelectrolytic Plating Techniques: Recent Developments”, Park Ridge, New York, 1980.Google Scholar
  4. 4.
    G. O. Mallory and J. B. Hajdu (Eds.), “Electroless Plating: Fundamentals and Applications”, American Electroplaters and Surface Finishers Society, Orlando, 1990.Google Scholar
  5. 5.
    K. L. Mittal and J. R. Susko (Eds.), “Metallized Plastics: Fundamentals and Applications”, Marcel Dekker, New York, 1998.Google Scholar
  6. 6.
    J. R. Davis, “Copper and Copper Alloys”, ASM International, Materials Park, OH, 2001.Google Scholar
  7. 7.
    E. T. Kang, Y. P. Ting, K. G. Neoh, and K. L. Tan, Synth. Met., 69, 477 (1995).CrossRefGoogle Scholar
  8. 8.
    E. T. Kang, K. G. Neoh, S. W. Huang, S. L. Lim, and K. L. Tan, J. Phys. Chem. B, 101, 10744 (1997).CrossRefGoogle Scholar
  9. 9.
    Z. H. Ma, K. L. Tan, and E. T. Kang, Synth. Met., 114, 17 (2000).CrossRefGoogle Scholar
  10. 10.
    J. Stejskal and R. G. Gilbert, Pure Appl. Chem., 74, 857 (2002).CrossRefGoogle Scholar
  11. 11.
    T. Osaka and H. Takematsu, J. Electrochem. Soc., 127, 1021 (1980).CrossRefGoogle Scholar
  12. 12.
    R. D. Sun, D. A. Tryk, K. Hashimoto, and A. Fujishima, J. Electrochem. Soc., 145, 3378 (1998).CrossRefGoogle Scholar
  13. 13.
    J. Chastain (Ed.), “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer, Eden Praire, MN, 1992.Google Scholar
  14. 14.
    A. G. MacDiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, Synth. Met., 18, 285 (1987).CrossRefGoogle Scholar
  15. 15.
    A. G. MacDiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, Synth. Met., 18, 393 (1987).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer-Verlag Berlin Heidelberg GmbH 2009

Authors and Affiliations

  1. 1.Department of Organic Materials and Fiber EngineeringSoongsil UniversitySeoulKorea
  2. 2.Department of Chemical and Environmental EngineeringSoongsil UniversitySeoulKorea

Personalised recommendations