Skip to main content
Log in

Effect of two bounding walls on the rotational motion of a fiber in the simple shear flow

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The effect of two bounding walls on the rotational motion of a freely suspended non-Brownian fiber in the simple shear flow at low Reynolds number was investigated numerically using the lattice-Boltzmann method. Data were reported for the fibers with aspect ratios of 8, 10, and 15 under various ratios of wall gap (2h) to fiber length (L). For 2h/L≥3.0, the time-dependent orientation of the fiber is shown to be in quantitative agreement with the Jeffery’s theory for ellipsoids suspended in an unbounded linear shear flow, and the effect of the walls on the rotational period of the fiber is insignificant for all fibers with different aspect ratios. For 1.8≤2h/L<3.0, the results reveal that the walls have different effects on the rotation of fiber. For 2h/L<1.8, the complete periodical motion of the fiber is suppressed. The fiber rotates to nearly aligning with the flow direction, and then ceases to rotate. In this orientation, the walls have a stabilizing effect on the fiber and this effect is more pronounced for the fibers with large aspect ratio. The fiber finally does not orient with the flow direction, but with a small angle with the flow direction, and the angle is an increasing function of the fiber aspect ratio and dependent on the wall gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Magda, M. Tirrell, and H. T. Davis, J. Chem. Phys., 88(2), 1207 (1988).

    Article  CAS  Google Scholar 

  2. C. A. Stover and C. Cohen, Rheol. Acta, 29, 192 (1990).

    Article  CAS  Google Scholar 

  3. R. Hsu and P. Ganatos, J. Fluid Mech., 268, 267 (1994).

    Article  Google Scholar 

  4. E. Gavze and M. Shapiro, Int. J. Multiphase Flow, 23(1), 155 (1997).

    Article  CAS  Google Scholar 

  5. K. B. Moses, S. G. Advani, and A. Reinhardt, Rheol. Acta, 40, 296 (2001).

    Article  CAS  Google Scholar 

  6. X. F. Li and C. Pozrikidis, Philos. Trans. R. Soc. London, Ser. A, 361, 847 (2003).

    Article  Google Scholar 

  7. R. Mor, M. Gottlieb, L. A. Mondy, and A. L. Graham, J. Rheol., 47(1), 19 (2003).

    Article  CAS  Google Scholar 

  8. J. Z. Lin, W. F. Zhang, and Z. S. Yu, J. Aerosol Sci., 35, 63 (2004).

    Article  CAS  Google Scholar 

  9. C. Pozrikidis, J. Fluid Mech., 541, 105 (2005).

    Article  Google Scholar 

  10. L. X. Zhang, J. Z. Lin, and W. F. Zhang, Prog. Nat. Sci., 16, 16 (2006).

    Article  Google Scholar 

  11. R. Holm and D. Söderberg, Rheol. Acta, 46, 721 (2007).

    Article  CAS  Google Scholar 

  12. A. Carlsson, F. Lundell, and L. D. Söderberg, J. Fluids Eng., 129, 457 (2007).

    Article  Google Scholar 

  13. S. L. Zhang, J. Z. Lin, and W. F. Zhang, Chin. J. Chem. Eng., 15, 30 (2007).

    Article  Google Scholar 

  14. J. Z. Lin, S. L. Zhang, and J. A. Olson, Fiber. Polym., 8, 60 (2007).

    Article  CAS  Google Scholar 

  15. A. J. C. Ladd, J. Fluid Mech., 271, 285 (1994).

    Article  CAS  Google Scholar 

  16. C. K. Aidun and Y. Lu, J. Stat. Phys., 81, 49 (1995).

    Article  Google Scholar 

  17. C. K. Aidun, Y. Lu, and E. Ding, J. Fluid Mech., 373, 287 (1998).

    Article  CAS  Google Scholar 

  18. S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech., 30, 329 (1998).

    Article  Google Scholar 

  19. P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev., 94, 511 (1954).

    Article  CAS  Google Scholar 

  20. H. Chen, S. Chen, and W. H. Matthaeus, Phys. Rev. A, 45(8), R5339 (1992).

    Article  Google Scholar 

  21. A. J. C. Ladd, J. Fluid Mech., 271, 311 (1994).

    Article  CAS  Google Scholar 

  22. G. B. Jeffery, Proc. R. Soc. London, Sect. A, 102, 161 (1922).

    Article  Google Scholar 

  23. F. P. Bretherton, J. Fluid Mech., 14(2), 284 (1962).

    Article  Google Scholar 

  24. J. B. Harris and J. F. T. Pittman, J. Colloid Interface Sci., 50, 280 (1975).

    Article  Google Scholar 

  25. A. Karnis, H. L. Goldsmith, and S. G. Mson, Can. J. Chem. Eng., 44, 181 (1966).

    Article  CAS  Google Scholar 

  26. G. Subramanian and D. L. Koch, J. Fluid Mech., 535, 383 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, X., Lin, J. Effect of two bounding walls on the rotational motion of a fiber in the simple shear flow. Fibers Polym 10, 302–309 (2009). https://doi.org/10.1007/s12221-009-0302-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-009-0302-7

Keywords

Navigation