Skip to main content
Log in

Investigating the effect of various blend ratios of prepared masterbatch containing Ag/TiO2 nanocomposite on the properties of bioactive continuous filament yarns

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this research, possibility of producing and processing antibacterial organic/inorganic nanocomposite polypropylene filament yarns for permanent antimicrobial efficiency has been investigated. First PP powder and inorganic nanocomposite filler were mixed in a twin screw extruder and modified masterbatch was produced. Continuous filament yarn was made by a pilot plant melt spinning machine from the blend of PP granule and various blending contents of the prepared masterbatch. Pure PP and all other combined samples showed acceptable spinnability at the spinning temperature of 240 °C and take-up speed of 2000 m/min. After producing as-spun filament yarns, samples were drawn, textured and finally weft knitted. Physical and structural properties of as-spun and drawn yarns with constant and variable draw ratios were investigated and also tensile and crimp properties of textured yarns were evaluated. Moreover, the DSC, SEM, FTIR techniques have been used for characterization of samples. Finally antibacterial efficiency of knitted samples was evaluated. The experimental results indicated that the maximum crystallinity reduction of modified drawn yarns has reached to 5 %. The observed improvement in the tensile properties of modified as-spun yarns compared to the pure PP was significant. Drawing process improved generally the tensile properties of as-spun yarns. Tensile properties of modified textured and drawn yarns were higher than the pure PP. An optimum of antibacterial activity has been observed in the sample containing 0.75 wt% of nano-filler. It is interesting that the optimum of tensile properties has been also obtained for the sample with maximum bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bagherzadeh, M. Montazer, M. Latifi, M. Sheikhzadeh, and M. Sattari, Fiber. Polym., 8, 386 (2007).

    Article  CAS  Google Scholar 

  2. W. S. Moon, J. C. Kim, K. H. Chung, E. S. Park, M. N. Q. Kim, and J. S. Yoon, J. Appl. Polym. Sci., 90, 1797 (2003).

    Article  CAS  Google Scholar 

  3. R. L. Dunn, J. W. Gibson, B. H. Perkins, J. M. Goodson, and L. B. Laufe, ASC-Polymeric Ma. Sci. & Eng., 51, 28 (1984).

    CAS  Google Scholar 

  4. R. S. Nohr and J. G. MacDonald, J. Biomater. Sci., Polym. Ed., 5, 607 (1994).

    Article  CAS  Google Scholar 

  5. Z. Hagiwara, S. Hoshino, H. Ishino, S. Nohara, K. Tagawa, and K. Yamanaka, US Patent, 4775585 (1988).

  6. Y. Shin, D. Yoo, and K. Min, J. Appl. Polym. Sci., 74, 2911 (1999).

    CAS  Google Scholar 

  7. S. Y. Yeo and S. H. Jeong, Polym. Int., 52, 1053 (2003).

    Article  CAS  Google Scholar 

  8. A. Marcincin, A. Ujhelyiova, J. Legen, V. Kabatova, and P. Jambrich, Vlakana-a-textil., 4, 38 (1997).

    CAS  Google Scholar 

  9. J. R. Pauqquet and P. S. Rzymelika, Chem. Fibers Int., 51, 446 (2001).

    Google Scholar 

  10. J. R. Pauqquet and P. S. Rzymelika, Chem. Fibers Int., 50, 468 (2000).

    Google Scholar 

  11. J. M. Yang, H. T. Lin, T. H. Wu, and C. C. Chen, J. Appl. Polym. Sci., 90, 1331 (2003).

    Article  CAS  Google Scholar 

  12. S. Mosleh and S. M. Gawish, J. Appl. Polym. Sci., 89, 2917 (2003).

    Article  CAS  Google Scholar 

  13. G. Fu, P. S. Vary, and C. T. Lin, J. Phys. Chem. B, 109, 8889 (2005).

    Article  CAS  Google Scholar 

  14. R. Dastjerdi, Masteer Thesis, Amirkabir University of Technology, 2006.

  15. V. B. Gupta and Y. C. Bhuvanesh, J. Appl. Polym. Sci., 60, 1951 (1996).

    Article  CAS  Google Scholar 

  16. L. Mandelkem and R. G. Alamo, “Physical Properties of Polymers”, Air Press, Woodbury, New York, 1996.

    Google Scholar 

  17. W. G. F. Sengers, O. van den Berg, M. Wubbenhorst, A. D. Gotsis, and S. J. Picken, Polymer, 46, 6064 (2005).

    Article  CAS  Google Scholar 

  18. S. Aslanzadeh and M. Haghighat Kish, Polym. Degrad. Stab., 90, 461 (2005).

    Article  CAS  Google Scholar 

  19. M. S. Rabello and J. R. White, Polym. Degrad. Stab., 56, 55 (1997).

    Article  CAS  Google Scholar 

  20. M. L. Castejon, P. Tiemblo, and J. M. Gomez-Eivira, Polym. Degrad. Stab., 70, 357 (2000).

    Article  CAS  Google Scholar 

  21. D. J. Carlsson, F. R. S. Clark, and D. M. Wiles, Text. Res. J., 46, 590 (1976).

    CAS  Google Scholar 

  22. K. G. Gatos, N. S. Sawanis, A. A. Apostolov, R. Thomann, and J. K. Kocsis, Macromol. Mater. Eng., 289, 1079 (2004).

    Article  CAS  Google Scholar 

  23. J. V. Edwards and T. Vigo, “Bioactive Fibers & Polymers”, American Chemical Society, Washington DC, 2001.

    Google Scholar 

  24. M. Montazer and M. G. Afjeh, J. Appl. Polym. Sci., 103, 178 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Dastjerdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dastjerdi, R., Mojtahedi, M.R.M. & Shoshtari, A.M. Investigating the effect of various blend ratios of prepared masterbatch containing Ag/TiO2 nanocomposite on the properties of bioactive continuous filament yarns. Fibers Polym 9, 727–734 (2008). https://doi.org/10.1007/s12221-008-0114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-008-0114-1

Keywords

Navigation