Skip to main content
Log in

Tension dynamics of the fibers in a triangular plane flow of bundle

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The ring spinning method is broadly used for manufacturing various forms of yarns in various application fields in thanks of the outstanding yarn characteristics and the well established processing technology. However, applying the ring spinning for manufacturing functional yarn, for example, the core-spun yarn, often raises serious yarn quality problems. Especially, surface defects make it difficult to extend the technology to various end-purposes. Dynamic state of the tension of fibers in the spinning triangle that is considered as a triangular plane flow field plays an important role in causing the defects. In this study, a theoretical model describing the tension behavior of the fibers in the triangular plane flow field was derived and the availability of the model was tested experimentally. Results showed that the steady-state experiments brought good corresponding results with those from the theory, which identifies the effectiveness of the theoretical model. The tension dynamics of the fibers in spinning triangle could be expressed as a 1st order system, while the spinning triangle length and the process velocity could majorly affect the tension dynamic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Morton, Text. Res. J., 26, 325 (1956).

    Article  Google Scholar 

  2. G. Riding, J. Text. Inst., 55, T9 (1964).

    Article  Google Scholar 

  3. J. W. S. Hearle, B. S. Gupta, and V. B. Merchant, Text. Res. J., 35, 329 (1965).

    Article  Google Scholar 

  4. Y. Huh, Y. R. Kim, and W. Y. Ryu, Text. Res. J., 71, 81 (2001).

    CAS  Google Scholar 

  5. Y. Huh, Y. R. Kim, and W. Y. Ryu, J. Korean Fiber Soc., 41, 237 (2004).

    CAS  Google Scholar 

  6. G. F. Ruppenicker, R. J. Harper, A. P. Sawhney, and K. Q. Robert, Text. Res. J., 59, 12 (1989).

    Article  CAS  Google Scholar 

  7. A. P. S. Sawhney, K. Q. Robert, and G. F. Ruppenicker, Text. Res. J., 59, 519 (1989).

    Article  Google Scholar 

  8. Ali. A. A. Jeddi, M. S. Johari, and A. A. Merati, J. Text. Inst., 88(part 1), 12 (1997).

    Article  Google Scholar 

  9. O. Babaarslan, Text. Res. J., 71, 367 (2001).

    CAS  Google Scholar 

  10. M. Dang, Z. Zhang, and S. Wang, Fiber. Polym., 7, 420 (2006).

    Article  CAS  Google Scholar 

  11. C.-L. Su, M.-C. Maa, and H.-Y. Yang, Text. Res. J., 74, 607 (2004).

    Article  CAS  Google Scholar 

  12. C.-W. Lou, Text. Res. J., 75, 466 (2005).

    Article  CAS  Google Scholar 

  13. C. M. Deng, L. J., Wang, and X. G. Wang, Fiber. Polym., 8, 289 (2007).

    Article  CAS  Google Scholar 

  14. Y. Huh and J. S. Kim, Fiber. Polym., 7, 424 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Huh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huh, Y., Kim, H.J. & Kim, J.S. Tension dynamics of the fibers in a triangular plane flow of bundle. Fibers Polym 9, 349–354 (2008). https://doi.org/10.1007/s12221-008-0056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-008-0056-7

Keywords

Navigation