Skip to main content
Log in

The First Width of Non-negatively Curved Surfaces with Convex Boundary

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, free boundary geodesic networks whose length realizes the first min–max width of the length functional are investigated. This functional acts on the space of relative flat 1-dimensional cycles modulo 2 in a compact surface with boundary. The widths are special critical values of the volume functional in some class of submanifolds which naturally arise in the Min–max Theory of Almgren and Pitts. The main result of this work concerns the existence of a geodesic network with a rather simple structure which realizes the first width of a surface with non-negative sectional curvature and strictly convex boundary. More precisely, it is either a simple geodesic meeting the boundary orthogonally, or a geodesic loop with vertex at a boundary point determining two equal angles with that boundary curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. Almgren, F.J., Jr.: The Theory of Varifolds. Mimeographed Notes. Princeton University Press, Princeton (1965)

  2. Pitts, J.T.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. Mathematical Notes, vol. 27, p. 330. Princeton University Press/University of Tokyo Press, Tokyo/Princeton (1981)

  3. Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34(6), 741–797 (1981). https://doi.org/10.1002/cpa.3160340603

    Article  MathSciNet  Google Scholar 

  4. Chodosh, O., Mantoulidis, C.: The p-widths of a surface. Publ. Math. IHÉS 137(1), 245–342 (2023). https://doi.org/10.1007/s10240-023-00141-7

    Article  MathSciNet  Google Scholar 

  5. Donato, S.: The first \(p\)-widths of the unit disk. J. Geom. Anal. 32(6), 177 (2022). https://doi.org/10.1007/s12220-022-00913-3

    Article  MathSciNet  Google Scholar 

  6. Irie, K., Marques, F..C., Neves, A.: Density of minimal hypersurfaces for generic metrics. Ann. Math. (2) 187(3), 963–972 (2018). https://doi.org/10.4007/annals.2018.187.3.8

    Article  MathSciNet  Google Scholar 

  7. Liokumovich, Y., Marques, F.C., Neves, A.: Weyl law for the volume spectrum. Ann. Math. (2) 187(3), 933–961 (2018). https://doi.org/10.4007/annals.2018.187.3.7

    Article  MathSciNet  Google Scholar 

  8. Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. Invent. Math. 209(2), 577–616 (2017). https://doi.org/10.1007/s00222-017-0716-6

    Article  MathSciNet  Google Scholar 

  9. Marques, F.C., Neves, A., Song, A.: Equidistribution of minimal hypersurfaces for generic metrics. Invent. Math. 216(2), 421–443 (2019). https://doi.org/10.1007/s00222-018-00850-5

    Article  MathSciNet  Google Scholar 

  10. Pitts, J.T.: Regularity and singularity of one dimensional stationary integral varifolds on manifolds arising from variational methods in the large. In: Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica & Convegno di Teoria Geometrica Dell’Integrazione e Varietà Minimali, INDAM, Rome, 1973), pp. 465–472. Academic Press, London (1974)

  11. Aiex, N.S.: The width of ellipsoids. Commun. Anal. Geom. 27(2), 251–285 (2019). https://doi.org/10.4310/CAG.2019.v27.n2.a1

    Article  MathSciNet  Google Scholar 

  12. Calabi, E., Cao, J.G.: Simple closed geodesics on convex surfaces. J. Differ. Geom. 36(3), 517–549 (1992). https://doi.org/10.4310/jdg/1214453180

    Article  MathSciNet  Google Scholar 

  13. Zhou, X., Zhu, J.J.: Min-max theory for networks of constant geodesic curvature. Adv. Math. 361, 106941–16 (2020). https://doi.org/10.1016/j.aim.2019.106941

    Article  MathSciNet  Google Scholar 

  14. Ketover, D., Liokumovich, Y.: On the existence of closed \(C^{1,1}\) curves of constant curvature. Preprint (2019). arXiv: org/abs/1810.09308

  15. Cheng, D.R., Zhou, X.: Existence of curves with constant geodesic curvature in a Riemannian 2-sphere. Trans. Am. Math. Soc. 374(12), 9007–9028 (2021). https://doi.org/10.1090/tran/8510

    Article  MathSciNet  Google Scholar 

  16. Asselle, L., Benedetti, G.: The Lusternik–Fet theorem for autonomous Tonelli Hamiltonian systems on twisted cotangent bundles. J. Topol. Anal. 8(3), 545–570 (2016). https://doi.org/10.1142/S1793525316500205

    Article  MathSciNet  Google Scholar 

  17. Chodosh, O., Mantoulidis, C.: Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates. Ann. Math. (2) 191(1), 213–328 (2020). https://doi.org/10.4007/annals.2020.191.1.4

    Article  MathSciNet  Google Scholar 

  18. Gaspar, P., Guaraco, M.A.M.: The Allen–Cahn equation on closed manifolds. Calc. Var. Partial Differ. Equ. 57(4), 101 (2018). https://doi.org/10.1007/s00526-018-1379-x

    Article  MathSciNet  Google Scholar 

  19. Gaspar, P., Guaraco, M.A.M.: The Weyl law for the phase transition spectrum and density of limit interfaces. Geom. Funct. Anal. 29(2), 382–410 (2019). https://doi.org/10.1007/s00039-019-00489-1

    Article  MathSciNet  Google Scholar 

  20. Guaraco, M.A.M.: Min-max for phase transitions and the existence of embedded minimal hypersurfaces. J. Differ. Geom. 108(1), 91–133 (2018). https://doi.org/10.4310/jdg/1513998031

    Article  MathSciNet  Google Scholar 

  21. Mantoulidis, C.: Allen–Cahn min–max on surfaces. J. Differ. Geom. 117(1), 93–135 (2021). https://doi.org/10.4310/jdg/1609902018

    Article  MathSciNet  Google Scholar 

  22. Dey, A.: A comparison of the Almgren–Pitts and the Allen–Cahn min–max theory. Geom. Funct. Anal. 32(5), 980–1040 (2022). https://doi.org/10.1007/s00039-022-00610-x

    Article  MathSciNet  Google Scholar 

  23. Li, M.M.-C., Zhou, X.: Min-max theory for free boundary minimal hypersurfaces I—regularity theory. J. Differ. Geom. 118(3), 487–553 (2021). https://doi.org/10.4310/jdg/1625860624

    Article  MathSciNet  Google Scholar 

  24. Almgren, F.J., Jr.: The homotopy groups of the integral cycle groups. Topology 1, 257–299 (1962). https://doi.org/10.1016/0040-9383(62)90016-2

    Article  MathSciNet  Google Scholar 

  25. Zhou, X.: On the free boundary min-max geodesics. Int. Math. Res. Not. IMRN 5, 1447–1466 (2016). https://doi.org/10.1093/imrn/rnv184

    Article  MathSciNet  Google Scholar 

  26. Gluck, H., Ziller, W.: Existence of periodic motions of conservative systems. In: Seminar on Minimal Submanifolds. Annals of Mathematics Studies, vol. 103, pp. 65–98 (1983). Princeton Univ. Press, Princeton (1983)

  27. Weinstein, A.: Periodic orbits for convex Hamiltonian systems. Ann. Math. 108(3), 507–518 (1978). https://doi.org/10.2307/1971185

    Article  MathSciNet  Google Scholar 

  28. Nabutovsky, A., Rotman, R.: Linear bounds for lengths of geodesic loops on Riemannian 2-spheres. J. Differ. Geom. 89(2), 217–232 (2011). https://doi.org/10.4310/jdg/1324477410

    Article  MathSciNet  Google Scholar 

  29. Li, M..M..-c: Chord shortening flow and a theorem of Lusternik and Schnirelmann. Pac. J. Math 299(2), 469–488 (2019). https://doi.org/10.2140/pjm.2019.299.469

    Article  MathSciNet  Google Scholar 

  30. Marques, F.C., Neves, A.: Rigidity of min-max minimal spheres in three-manifolds. Duke Math. J. 161(14), 2725–2752 (2012). https://doi.org/10.1215/00127094-1813410

    Article  MathSciNet  Google Scholar 

  31. Ambrozio, L., Montezuma, R.: On the min–max width of unit volume three-spheres. J. Differ. Geom. Preprint, accepted (2018). arXiv: org/abs/1809.03638

  32. Beach, I., Rotman, R.: The length of a shortest closed geodesic on a surface of finite area. Proc. Am. Math. Soc. 148(12), 5355–5367 (2020). https://doi.org/10.1090/proc/15194

    Article  MathSciNet  Google Scholar 

  33. Croke, C.B.: Area and the length of the shortest closed geodesic. J. Differ. Geom. 27(1), 1–21 (1988). https://doi.org/10.4310/jdg/1214441646

    Article  MathSciNet  Google Scholar 

  34. Abbondandolo, A., Bramham, B., Hryniewicz, U.L., Salomão, P.A.S.: A systolic inequality for geodesic flows on the two-sphere. Math. Ann. 367(1–2), 701–753 (2017). https://doi.org/10.1007/s00208-016-1385-2

    Article  MathSciNet  Google Scholar 

  35. Adelstein, I., Vargas Pallete, F.: The length of the shortest closed geodesic on positively curved 2-spheres. Math. Z. 300(3), 2519–2531 (2022). https://doi.org/10.1007/s00209-021-02875-8

    Article  MathSciNet  Google Scholar 

  36. Maeda, M.: The length of a closed geodesic on a compact surface. Kyushu J. Math. 48(1), 9–18 (1994). https://doi.org/10.2206/kyushujm.48.9

    Article  MathSciNet  Google Scholar 

  37. Nabutovsky, A., Rotman, R.: The length of the shortest closed geodesic on a 2-dimensional sphere. Int. Math. Res. Not. 23, 1211–1222 (2002). https://doi.org/10.1155/S1073792802110038

    Article  MathSciNet  Google Scholar 

  38. Rotman, R.: The length of a shortest closed geodesic on a two-dimensional sphere and coverings by metric balls. Geom. Dedicata 110, 143–157 (2005). https://doi.org/10.1007/s10711-004-3734-7

    Article  MathSciNet  Google Scholar 

  39. Sabourau, S.: Filling radius and short closed geodesics of the 2-sphere. Bull. Soc. Math. Fr. 132(1), 105–136 (2004). https://doi.org/10.24033/bsmf.2461

    Article  MathSciNet  Google Scholar 

  40. Allard, W.K., Almgren, F.J., Jr.: The structure of stationary one dimensional varifolds with positive density. Invent. Math. 34(2), 83–97 (1976). https://doi.org/10.1007/BF01425476

    Article  MathSciNet  Google Scholar 

  41. Colding, T.H., De Lellis, C.: The min–max construction of minimal surfaces. In: Surveys in Differential Geometry, vol. VIII (Boston, MA, 2002). Surveys in Differential Geometry, vol. 8, pp. 75–107. Int. Press, Somerville (2003). https://doi.org/10.4310/SDG.2003.v8.n1.a3.

  42. Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13(1), 178–215 (2003). https://doi.org/10.1007/s000390300004

    Article  MathSciNet  Google Scholar 

  43. Guth, L.: Minimax problems related to cup powers and Steenrod squares. Geom. Funct. Anal. 18(6), 1917–1987 (2009). https://doi.org/10.1007/s00039-009-0710-2

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney Donato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SD was supported by CAPES-Brazil 001. RM was supported by CNPq and Instituto Serrapilheira, grant “New perspectives of the min–max theory for the area functional”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donato, S., Montezuma, R. The First Width of Non-negatively Curved Surfaces with Convex Boundary. J Geom Anal 34, 60 (2024). https://doi.org/10.1007/s12220-023-01511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01511-7

Keywords

Mathematics Subject Classification

Navigation