Skip to main content
Log in

Existence and Stability of Normalized Solutions for Nonlocal Double Phase Problems

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the following nonlocal double phase problem involving the fractional p-Laplacian

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )_p^\alpha u+\mu \left[ u\right] ^{p-q}_{\beta ,q}(-\Delta )^{\beta }_q u =\lambda \left| u\right| ^{p-2}u+f(x,u)\ \ x\in \Omega ,\\ u=0\ \ \ x\in {\mathbb {R}}^N\setminus \Omega , \end{array}\right. }\end{aligned}$$

where \(0<\beta<\alpha<1,\,1<q\le p<{N \over \alpha },\,\mu ,\lambda \in {\mathbb {R}},\) \(f\in C(\Omega \times {\mathbb {R}})\). Based on the fractional Gagliardo–Nirenberg inequality, we first give the definition of the \(L^p\)-mass critical exponent. Then the existence of normalized ground state solutions no matter whether the nonlinearity f is \(L^p\)-mass subcritical, critical, or supercritical is discussed by using variational methods. In particular, in the supercritical case, we use the eigenvalue of perturbed fractional p-Laplace operator to characterize the conditions for existence of normalized ground states solutions. Finally, we investigate the orbital stability of ground state set of the problem. Our results are new even in the p-Laplacian case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Agueh, M.: Sharp Gagliardo-Nirenberg inequalities via \(p\)-Laplacian type equations. NoDEA Non-linear Differ. Equ. Appl. 15, 457–472 (2008)

    MathSciNet  Google Scholar 

  2. Alves, C.O., Ji, C., Miyagaki, O.H.: Normalized solutions for a Schrödinger equation with critical growth in \({\mathbb{R} }^N\). Calc. Var. Partial Differ. Equ. 61, 18 (2022)

    Google Scholar 

  3. Ambrosio, V., Rǎdulescu, V.D.: Fractional double-phase patterns: concentration and multiplicity of solutions. J. Math. Pures Appl. 142, 101–145 (2020)

    MathSciNet  Google Scholar 

  4. Ambrosio, V.: A Kirchhoff type equation in \({\mathbb{R} }^N\) involving the fractional \((p, q)\)-Laplacian. J. Geometric Anal. 32, 135 (2022)

    Google Scholar 

  5. Applebaum, D.: Lévy processes-from probability to finance quantum groups. Notices Am. Math. Soc. 51, 1336–1347 (2004)

    Google Scholar 

  6. Arora, B., Shmarev, S.: Double-phase parabolic equations with variable growth and nonlinear sources. Adv. Nonlinear Anal. 12, 304–335 (2023)

    MathSciNet  Google Scholar 

  7. Baldelli, L., Filippucci, R.: Existence of solutions for critical \((p, q)\)-Laplacian equations in \(\mathbb{R} ^N\). Commun. Contemp. Math. 60, 2150109 (2022)

    Google Scholar 

  8. Baldelli, L., Filippucci, R.: Roberta Singular quasilinear critical Schrödinger equations in \({\mathbb{R} }^N\). Commun. Pure Appl. Anal. 21, 2561–2586 (2022)

    MathSciNet  Google Scholar 

  9. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63(4), 337–403 (1976–1977)

  10. Bartsch, T., Zhong, X., Zou, W.: Normalized solutions for a coupled Schrödinger system. Math. Ann. 380, 1713–1740 (2021)

    MathSciNet  Google Scholar 

  11. Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations. Proc. Lond. Math. Soc. 107, 303–339 (2013)

    MathSciNet  Google Scholar 

  12. Berestycki, H., Lions, P.L.: Nonlinear scalar field equation II, existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82, 247–375 (1983)

    MathSciNet  Google Scholar 

  13. Bonheure, D., Colasuonno, F., Földes, J.: On the Born-Infeld equation for electrostatic fields with a superposition of point charges. Ann. Mat. Pura Appl. 198(3), 749–772 (2019)

    MathSciNet  Google Scholar 

  14. Bhakta, M., Mukherjee, D.: Multiplicity results for \((p,\, q)\) fractional elliptic equations involving critical nonlinearities. Adv. Differ. Equ. 24, 185–228 (2019)

    MathSciNet  Google Scholar 

  15. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    MathSciNet  Google Scholar 

  16. Caffarelli, L.: Nonlocal diffusions, drifts and games. Nonlinear Partial Differ. Equ. 7, 37–52 (2012)

    Google Scholar 

  17. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    MathSciNet  Google Scholar 

  18. Chang, K.-C.: Methods in Nonlinear Analysis. Springer Monographs in Mathematics, Springer, Berlin (2005)

    Google Scholar 

  19. Chang, X., Liu, M., Yan, D.: Normalized ground state solutions of nonlinear Schrödinger equations involving exponential critical growth, J. Geometric Anal. (2023)

  20. Chen, S., Rǎdulescu, V.D., Tang, X.: Normalized solutions of nonautonomous Kirchhoff equations: sub- and super-critical cases. Appl. Math. Optim. 84, 773–806 (2021)

    MathSciNet  Google Scholar 

  21. Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonity results. Ann. Inst. H. Poincaŕe Anal. Non Linéaire 15, 493–516 (1998)

    MathSciNet  Google Scholar 

  22. D\(\acute{1}\)az, J.: Nonlinear partial differential equations and free boundaries. Vol. I, Elliptic equations, research notes in mathematics, Vol. 106, Pitman Advanced Publishing Program, Boston, London, Melbourne (1985)

  23. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MathSciNet  Google Scholar 

  24. Figueiredo, G.M.: Existence of positive solutions for a class of \(p\) & \(q\) elliptic problems with critical growth on \({\mathbb{R} }^N\). J. Math. Anal. Appl. 378, 507–518 (2011)

    MathSciNet  Google Scholar 

  25. Goel, D., Kumar, D., Sreenadh, K.: regularity and multiplicity results for fractional \((p, q)\)-Laplacian equations. Comm. Contemp. Math. 22(8), 1950065 (2020)

    MathSciNet  Google Scholar 

  26. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    MathSciNet  Google Scholar 

  27. Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrődinger equation. J. Math. Pures Appl. 164, 158–179 (2022)

    MathSciNet  Google Scholar 

  28. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    MathSciNet  Google Scholar 

  29. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    MathSciNet  Google Scholar 

  30. Lenardi, S., Papageorgiou, N.S.: Positive solutions for a class of singular \((p, q)\)-equations. Adv. Nonlinear Anal. 12, 20220300 (2023)

    MathSciNet  Google Scholar 

  31. Li, Q., Nie, J., Zhang, W.: Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation, J. Geometric Anal. 33 (2023), no. 4, paper no. 126, 22 pp

  32. Li, Q., Zou, W.: The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the \(L^2\)-subcritical and \(L^2\)-supercritical cases. Adv. Nonlinear Anal. 11, 1531–1551 (2022)

    MathSciNet  Google Scholar 

  33. Liu, J., Patrizia, P.: Existence of solutions for a double-phase variable exponent equation without the Ambrosetti–Rabinowitz condition. Adv. Nonlinear Anal. 12, 20220292 (2023)

    MathSciNet  Google Scholar 

  34. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Partial Differ. Equ. 59, 143 (2020)

    Google Scholar 

  35. Marcellini, P., Miller, K.: Elliptic versus parabolic regularization for the equation of prescribed mean curvature. J. Differ. Equ. 137(1), 1–53 (1997)

    MathSciNet  Google Scholar 

  36. Mingqi, X., Rǎdulescu, V., Zhang, B.: Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity 31, 3228–3250 (2018)

    MathSciNet  Google Scholar 

  37. Mosconi, S., Perera, K., Squassina, M., Yang, Y.: The Brézis–Nirenberg problem for the fractional \(p\)-Laplacian. Calc. Var. Partial Differ. Equ. 55, 105 (2016)

    Google Scholar 

  38. Molica Bisci, G., Rǎdulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  39. Mucha, P.B., Rybka, P.: A note on a model system with sudden directional diffusion. J. Stat. Phys. 146(5), 975–988 (2012)

    MathSciNet  Google Scholar 

  40. Mugnai, D., Papageorgiou, N.S.: Wang’s multiplicity result for superlinear \((p, q)\)-equations without the Ambrosetti-Rabinowitz condition. Trans. Am. Math. Soc. 366(9), 4919–4937 (2014)

    MathSciNet  Google Scholar 

  41. Manouni, S.E., Marino, G., Winkert, P.: Existence results for double phase problems depending on Robin and Steklov eigenvalues for the \(p\)-Laplacian. Adv. Nonlinear Anal. 11, 304–320 (2022)

    MathSciNet  Google Scholar 

  42. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32(3), 1044–1072 (2019)

    MathSciNet  Google Scholar 

  43. Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: On a class of parametric \((p, 2)\)-equations. Appl. Math. Optim. 75(2), 193–228 (2017)

    MathSciNet  Google Scholar 

  44. Silva, K., Macedo, A.: Local minimizers over the Nehari manifold for a class of concave-convex problems with sign changing nonlinearity. J. Differ. Equ. 265, 1894–1921 (2018)

    MathSciNet  Google Scholar 

  45. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279(6), 108610 (2020)

    MathSciNet  Google Scholar 

  46. Wang, W., Li, Q., Zhou, J., Li, Y.: Normalized solutions for \(p\)-Laplacian equations with a \(L^2\)-supercritical growth. Ann. Funct. Anal. 12, 1 (2021)

    MathSciNet  Google Scholar 

  47. Wang, C., Sun, J.: Normalized solutions for the \(p\)-Laplacian equation with a trapping potential. Adv. Nonlinear Anal. 12, 20220291 (2023)

    MathSciNet  Google Scholar 

  48. Xiang, M., Rǎdulescu, V.D., Zhang, B.: Eistence results for singular fractional \(p\)-Kirchhoff problems. Acta Math. Sci. 42, 1209–1224 (2022)

    Google Scholar 

  49. Yang, T.: Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal \(L^2\)-critical or \(L^2\)-supercritical perturbation. J. Math. Phys. 61, 051505 (2020)

    MathSciNet  Google Scholar 

  50. Ye, H.: The existence and concentration behavior of normalized solutions for the \(L^2\)-critical Schrödinger–Poisson system. Comput. Math. Appl. 74, 266–280 (2017)

    MathSciNet  Google Scholar 

  51. Zakharov, V.E.: Collapse of Langmuir waves. J. Exp. Theoret. Phys. 35(5), 908–914 (1972)

    Google Scholar 

  52. Zhen, M., Zhang, B., Rǎdulescu, V.D.: Normalized solutions for nonlinear coupled fractional systems: low and high perturbations in the attractive case. Discret. Cont. Dyn. Syst. 41, 2653–2676 (2021)

    MathSciNet  Google Scholar 

  53. Zhang, J., Zhang, W., Rǎdulescu, V.D.: Double phase problems with competing potentials: concentration and multiplication of ground states. Math. Z. 301, 4037–4078 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 11601515) and the Tianjin Youth Talent Special Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqi Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, M., Ma, Y. Existence and Stability of Normalized Solutions for Nonlocal Double Phase Problems. J Geom Anal 34, 46 (2024). https://doi.org/10.1007/s12220-023-01497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01497-2

Keywords

Mathematics Subject Classification

Navigation