Skip to main content
Log in

The \(\textrm{G}_2\) Geometry of 3-Sasaki Structures

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We initiate a systematic study of the deformation theory of the second Einstein metric \(g_{\frac{1}{\sqrt{5}}}\) respectively the proper nearly \(\textrm{G}_2\) structure \(\varphi _{\frac{1}{\sqrt{5}}}\) of a 3-Sasaki manifold \((M^7,g)\). We show that infinitesimal Einstein deformations for \(g_{\frac{1}{\sqrt{5}}}\) coincide with infinitesimal \(\textrm{G}_2\) deformations for \(\varphi _{\frac{1}{\sqrt{5}}}\). The latter are showed to be parametrised by eigenfunctions of the basic Laplacian of g, with eigenvalue twice the Einstein constant of the 4-dimensional base orbifold, via an explicit differential operator. In terms of this parametrisation we determine those infinitesimal \(\textrm{G}_2\) deformations which are unobstructed to second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, B., Semmelmann, U.: Deformations of nearly parallel \({\rm G }_2\)-structures. Asian J. Math. 16, 713–744 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ball, G., Oliveira, G.: Gauge theory on Aloff–Wallach spaces. Geom. Topol. 23(2), 685–743 (2019)

    Article  MathSciNet  Google Scholar 

  3. Batat, W., Hall, S.J., Murphy, T.: Destabilising compact warped product Einstein manifolds. Commun. Anal. Geom. 29(5), 1061–1094 (2021)

    Article  MathSciNet  Google Scholar 

  4. Besse, A.: Einstein Manifolds. Springer, Berlin (2008)

    Google Scholar 

  5. Boyer, C.P., Galicki, K., Mann, B.M., Rees, E.G.: Compact \(3\)-Sasakian \(7\)-manifolds with arbitrary second Betti number. Invent. Math. 31(2), 321–344 (1998)

    Article  MathSciNet  Google Scholar 

  6. Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    Google Scholar 

  7. Bryant, R.: Some remarks on \({{\rm G}}_2\)-structures. In: Proceedings of Gökova Geometry-Topology Conference 2005 (GGT), pp. 75–109. Gökova (2006)

  8. Calderbank, D., Pedersen, H.: Selfdual Einstein metrics with torus symmetry. J. Differ. Geom. 60(3), 485–521 (2002)

    Article  MathSciNet  Google Scholar 

  9. Cao, H.-D., He, C.: Linear stability of Perelman’s \(\nu \)-entropy on symmetric spaces of compact type. J. Reine Angew. Math. 709, 229–246 (2015)

    Article  MathSciNet  Google Scholar 

  10. Coevering, C., Tipler, C.: Deformations of constant scalar curvature Sasakian metrics and K-stability. Int. Math. Res. Not. (IMRN) 22, 11566–11604 (2015)

    MathSciNet  Google Scholar 

  11. Coevering, C.: Deformations of Killing spinors on Sasakian and \(3\)-Sasakian manifolds. J. Math. Soc. Jpn. 69(1), 53–91 (2017)

    MathSciNet  Google Scholar 

  12. Foscolo, L.: Deformation theory of nearly Kähler manifolds. J. Lond. Math. Soc. (2) 95(2), 586–612 (2017)

    Article  MathSciNet  Google Scholar 

  13. Friedrich, Th., Kath, I., Moroianu, A., Semmelmann, U.: On nearly parallel \({\rm G }_2\)-structures. J. Geom. Phys. 23(3–4), 259–286 (1997)

    Article  MathSciNet  Google Scholar 

  14. Gibbons, G.W., Hartnoll, S.A., Pope, C.N.: Bohm and Einstein-Sasaki metrics, black holes, and cosmological event horizons. Phys. Rev. D (3) 67(8), 24, 084024 (2003)

  15. Hall, S.J.: The canonical Einstein metric on \({{\rm G}}_2\) is dynamically unstable under the Ricci flow. Bull. Lond. Math. Soc. 51(3), 399–405 (2019)

    Article  MathSciNet  Google Scholar 

  16. Hall, S.J., Murphy, T.: Bounding the invariant spectrum when the scalar curvature is non-negative. Contemp. Math. (AMS) 756, 136–139 (2020)

    MathSciNet  Google Scholar 

  17. Hall, S.J., Murphy, T., Waldron, J.: Compact Hermitian symmetric space, coadjoint orbits and the dynamical instability of the Ricci flow. J. Geom. Anal. 31(6), 6195–6218 (2021)

    Article  MathSciNet  Google Scholar 

  18. Heil, K., Moroianu, A., Semmelmann, U.: Killing and conformal killing tensors. J. Geom. Phys. 106, 383–400 (2016)

    Article  MathSciNet  Google Scholar 

  19. Hitchin, N.: Stable forms and special metrics. In: Fernandez, M., Wolf, J. (eds.) Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000). Contemporary in Mathematics, vol. 288, pp. 70–89. American Mathematical Society, Providence (2001)

  20. Ivanov, S., Petkov, A., Vassilev, D.: The sharp lower bound of the first eigenvalue of the sub-Laplacian on a quaternionic contact manifold in dimension seven, Nonlinear. Analysis 93, 51–61 (2013)

    MathSciNet  Google Scholar 

  21. Jung, S.D., Richardson, K.: Transverse conformal killing forms and a Gallot–Meyer theorem for foliations. Math. Z. 270(1–2), 337–350 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kawai, K., Yamamoto, H.: Deformation theory of deformed Hermitian Yang–Mills connections and deformed Donaldson–Thomas connections. J. Geom. Anal. 32(5), Paper No. 157, 51 pp (2022)

  23. Knopf, D., Sesum, N.: Dynamic instability of \({\mathbb{C}\mathbb{P} }^N\) under Ricci flow. J. Geom. Anal. 29, 902–916 (2019)

    Article  MathSciNet  Google Scholar 

  24. Koiso, N.: Rigidity and stability of Einstein metrics-the case of compact symmetric spaces. Osaka Math. J. 17(1), 51–73 (1980)

    MathSciNet  Google Scholar 

  25. Koiso, N.: Einstein metrics and complex structure. Invent. Math. 73, 71–106 (1983)

    Article  MathSciNet  Google Scholar 

  26. Kröncke, K.: Stability and instability of Ricci solitons. Calc. Var. Partial Differ. Equ. 53(1–2), 265–287 (2015)

    Article  MathSciNet  Google Scholar 

  27. Kröncke, K.: Stability of Einstein metrics under Ricci flow. Commun. Anal. Geom. 28(2), 351–394 (2020)

    Article  MathSciNet  Google Scholar 

  28. Lee, J., Richardson, K.: Lichnerowicz and Obata theorems for foliations. Pac. J. Math. 206(2), 339–357 (2002)

    Article  MathSciNet  Google Scholar 

  29. Nagy, P.-A., Semmelmann, U.: Deformations of nearly \({{\rm G}}_2\) structures. J. Lond. Math. Soc. (2) 104(4), 1795–1811 (2021)

    Article  MathSciNet  Google Scholar 

  30. Nagy, P.-A., Semmelmann, U.: Eigenvalue estimates for \(3\)-Sasaki structures. J. Reine Angew. Math. 803, 35–60 (2023)

    MathSciNet  Google Scholar 

  31. Pedersen, H., Poon, Y.S.: A note on rigidity of \(3\)-Sasakian manifolds. Proc. Am. Math. Soc. 127, 3027–3034 (1999)

    Article  MathSciNet  Google Scholar 

  32. Rumin, M.: Formes differéntiellles sur les variétés de contact. J. Differ. Geom. 39, 281–330 (1994)

    Article  MathSciNet  Google Scholar 

  33. Tanaka, N.: A Differential Geometric Study of Strongly Pseudo-Convex Manifolds. Lectures in Mathematics. Department of Mathematics, Kyoto University, Tokyo (1975)

  34. Wang, C., Wang, M.Y.-K.: Instability of some Riemannian manifolds with real Killing spinors. Comm. Anal. Geom. 30(8), 1895–1931 (2022)

    Article  MathSciNet  Google Scholar 

  35. Wang, Changliang, Wang, McKenzie Y.-K.: Stability of Einstein metrics on fiber bundles. J. Geom. Anal. 31(1), 490–515 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Paul-Andi Nagy was supported by the Institute for Basic Science (IBS-R032-D1).This research has also been supported by the Special Priority Program SPP 2026 ‘Geometry at Infinity’ funded by the DFG. It is a pleasure to thank Tommy Murphy for many useful conversations on stability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Semmelmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, PA., Semmelmann, U. The \(\textrm{G}_2\) Geometry of 3-Sasaki Structures. J Geom Anal 34, 61 (2024). https://doi.org/10.1007/s12220-023-01494-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01494-5

Keywords

Mathematics Subject Classification

Navigation