Skip to main content
Log in

Extremal Sections for a Trudinger–Moser Functional on Vector Bundle over a Closed Riemann Surface

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Trudinger–Moser inequalities are important tools in partial differential equations and geometric analysis. Although there have been many results in this regard, there are few studies on vector valued function spaces. Years ago, joined with Y. Li and P. Liu, the second named author established a Trudinger–Moser inequality on vector bundle over a closed Riemann surface. In that article (Calc Var 28:59–87, 2007), we do not settle down the existence of extremal bundle sections. In the present paper, we have two purposes, one is to prove the existence of extremal bundle sections, and the other is to generalize such an inequality to a stronger one with remainder terms. The proof is based on a much more delicate analysis and a very careful construction of a sequence of bundle sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Adimurthi, O.D.: Blow-up analysis in dimension 2 and a sharp form of Trudinger–Moser inequality. Commun. Partial Differ. Equ. 29(1–2), 295–322 (2004)

    MathSciNet  Google Scholar 

  2. Carleson, L., Chang, S.-Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110(2), 113–127 (1986)

    MathSciNet  Google Scholar 

  3. Chen, W.X., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615–622 (1991)

    Article  MathSciNet  Google Scholar 

  4. Csató, G., Nguyen, V.H., Roy, P.: Extremals for the singular Moser–Trudinger inequality via \(n\)-harmonic transplantation. J. Differ. Equ. 270, 843–882 (2021)

    Article  MathSciNet  Google Scholar 

  5. Csató, G., Roy, P.: Extremal functions for the singular Moser–Trudinger inequality in 2 dimensions. Calc. Var. Partial Differ. Equ. 54(2), 2341–2366 (2015)

    Article  MathSciNet  Google Scholar 

  6. de Souza, M., Do Ó, J.M.: A sharp Trudinger–Moser type inequality in \({\mathbb{R}}^2\). Trans. Am. Math. Soc. 366(9), 4513–4549 (2014)

  7. Ding, W., Jost, J., Li, J., Wang, G.: The differential equation \(\Delta u=8\pi -8\pi he^u\) on a compact Riemann surface. Asian J. Math. 1(2), 230–248 (1997)

    Article  MathSciNet  Google Scholar 

  8. Do Ó, J.M., de Souza, M.: A sharp inequality of Trudinger–Moser type and extremal functions in \(H^{1,n}({\mathbb{R}}^n)\). J. Differ. Equ. 258(11), 4062-4101 (2015)

  9. Do Ó, J.M., de Souza, M.: Trudinger–Moser inequality on the whole plane and extremal functions. Commun. Contemp. Math. 18(5), 1550054 (2016)

  10. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)

    Google Scholar 

  11. Flucher, M.: Extremal functions for the Trudinger–Moser inequality in 2 dimensions. Comment. Math. Helv. 67(3), 471–497 (1992)

    Article  MathSciNet  Google Scholar 

  12. Fontana, L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. 68(3), 415–454 (1993)

    Article  MathSciNet  Google Scholar 

  13. Hang, F.: Aubin type almost sharp Moser–Trudinger inequality revisited. J. Geom. Anal. 32(9), Paper No. 230 (2022)

  14. Li, Y.: Moser–Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14(2), 163–192 (2001)

    MathSciNet  Google Scholar 

  15. Li, Y.: Extremal functions for the Moser–Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A 48(5), 618–648 (2005)

    Article  MathSciNet  Google Scholar 

  16. Li, Y., Liu, P., Yang, Y.: Moser–Trudinger inequalities of vector bundle over a compact Riemannian manifold of dimension 2. Calc. Var. Partial Differ. Equ. 28(1), 59–83 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lin, K.-C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348(7), 2663–2671 (1996)

    Article  MathSciNet  Google Scholar 

  18. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1(1), 145–201 (1985)

  19. Lu, G., Yang, Y.: Sharp constant and extremal function for the improved Moser–Trudinger inequality involving \(L^p\) norm in two dimension. Discret. Contin. Dyn. Syst. 25(3), 963–979 (2009)

    Article  Google Scholar 

  20. Mancini, G., Martinazzi, L.: The Moser–Trudinger inequality and its extremals on a disk via energy estimates. Calc. Var. Partial Differ. Equ. 56(4), Paper No. 94 (2017)

  21. Mancini, G., Thizy, P.-D.: Non-existence of extremals for the Adimurthi–Druet inequality. J. Differ. Equ. 266(2–3), 1051–1072 (2019)

    Article  MathSciNet  Google Scholar 

  22. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/1971)

  23. Nguyen, V.H.: Improved Moser–Trudinger inequality of Tintarev type in dimension \(n\) and the existence of its extremal functions. Ann. Glob. Anal. Geom. 54(2), 237–256 (2018)

    Article  MathSciNet  Google Scholar 

  24. Nguyen, V.H.: The weighted Moser–Trudinger inequalities of Adimurthi–Druet type in \({\mathbb{R}}^N\). Nonlinear Anal. 195, 111723 (2020)

  25. Peetre, J.: Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier (Grenoble) 16, fasc. 1, 279–317 (1966)

  26. Pohozaev, S.: The Sobolev embedding in the special case \(pl=n\). In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965. Mathematics Sections. Moscov. Energet. Inst., Moscow, pp. 158–170 (1965)

  27. Struwe, M.: Positive solutions of critical semilinear elliptic equations on non-contractible planar domains. J. Eur. Math. Soc. (JEMS) 2(4), 329–388 (2000)

    Article  MathSciNet  Google Scholar 

  28. Tintarev, C.: Trudinger–Moser inequality with remainder terms. J. Funct. Anal. 266(1), 55–66 (2014)

    Article  MathSciNet  Google Scholar 

  29. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  Google Scholar 

  30. Yang, J.: A weighted Trudinger-Moser inequality on a closed Riemann surface with a finite isometric group action. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116(2), Paper No. 70 (2022)

  31. Yang, Y.: Extremal functions for Moser–Trudinger inequalities on 2-dimensional compact Riemannian manifolds with boundary. Int. J. Math. 17(3), 313–330 (2006)

    Article  MathSciNet  Google Scholar 

  32. Yang, Y.: A sharp form of Moser–Trudinger inequality in high dimension. J. Funct. Anal. 239(1), 100–126 (2006)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y.: A weighted form of Moser–Trudinger inequality on Riemannian surface. Nonlinear Anal. 65(3), 647–659 (2006)

    Article  MathSciNet  Google Scholar 

  34. Yang, Y.: A sharp form of the Moser–Trudinger inequality on a compact Riemannian surface. Trans. Am. Math. Soc. 359(12), 5761–5776 (2007)

    Article  MathSciNet  Google Scholar 

  35. Yang, Y.: Extremal functions for Trudinger–Moser inequalities of Adimurthi–Druet type in dimension two. J. Differ. Equ. 258(9), 3161–3193 (2015)

    Article  MathSciNet  Google Scholar 

  36. Yang, Y.: A remark on energy estimates concerning extremals for Trudinger–Moser inequalities on a disc. Arch. Math. (Basel) 111(2), 215–223 (2018)

    Article  MathSciNet  Google Scholar 

  37. Yang, Y.: Nonexistence of extremals for an inequality of Adimurthi–Druet on a closed Riemann surface. Sci. China Math. 63(8), 1627–1644 (2020)

    Article  MathSciNet  Google Scholar 

  38. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Sov. Math. Docl. 2, 746–749 (1961)

    Google Scholar 

  39. Zhou, C.L., Zhou, C.Q.: Extremal functions of Moser–Trudinger inequality involving Finsler–Laplacian. Commun. Pure Appl. Anal. 17(6), 2309–2328 (2018)

    Article  MathSciNet  Google Scholar 

  40. Zhou, C.L., Zhou, C.Q.: Extremal functions of the singular Moser–Trudinger inequality involving the eigenvalue. J. Partial Differ. Equ. 31(1), 71–96 (2018)

    Article  MathSciNet  Google Scholar 

  41. Zhu, X.: A singular Moser–Trudinger inequality for mean value zero functions in dimension two. Sci. China Math. 64(11), 2521–2538 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yang, Y. Extremal Sections for a Trudinger–Moser Functional on Vector Bundle over a Closed Riemann Surface. J Geom Anal 34, 41 (2024). https://doi.org/10.1007/s12220-023-01487-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01487-4

Keywords

Mathematics Subject Classification

Navigation