Skip to main content
Log in

Some Liouville-Type Results for the 3D Incompressible MHD Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate some Liouville-type properties for the stationary incompressible MHD equations in three dimensions. Liouville-type properties are concerned with the uniqueness of trivial solutions to the stationary MHD equations. We show that the velocity field u and the magnetic field b are vanishing provided that \( u \in {BMO}^{-1}({\mathbb {R}}^3) \) and \( b\in L^{p,\infty }({\mathbb {R}}^3)\) with \(2 < p \le 6\). Moreover, we also prove that if

then u and b are vanishing for the stationary 3D MHD equations with partial viscosity and partial diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bildhauer, M., Fuchs, M., Zhang, G.: Liouville-type theorems for steady flows of degenerate power law fluids in the plane. J. Math. Fluid Mech. 15, 583–616 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bang, J., Gui, C., Wang, Y., Xie, C.: Liouville-type theorems for steady solutions to the Navier–Stokes system in a slab, arXiv:2205.13259v4 [math.AP]

  3. Bourgain, J., Pavlović, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255, 2233–2247 (2008)

    Article  MathSciNet  Google Scholar 

  4. Chen, X., Li, S., Wang, W.: Remarks on Liouville-type theorems for the steady MHD and Hall-MHD equations. J. Nonlinear Sci. 32, 12 (2022)

    Article  MathSciNet  Google Scholar 

  5. Chae, D.: Liouville-type theorems for the forced Euler equations and the Navier–Stokes equations. Commun. Math. Phys. 326, 37–48 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chae, D., Wolf, J.: On Liouville type theorems for the steady Naiver–Stokes equations in \({\mathbb{R} }^3\). J. Differ. Equ. 261, 5541–5560 (2016)

    Article  Google Scholar 

  7. Chae, D., Wolf, J.: On Liouville type theorems for the stationary MHD and Hall-MHD systems. J. Differ. Equ. 295, 233–248 (2021)

    Article  MathSciNet  Google Scholar 

  8. Chae, D., Weng, S.: Liouville type theorems for the steady axially symmetric Navier–Stokes and Magnetohydrodynamic equations. Discrete Cont. Dyn. Syst. 36, 5267–5285 (2016)

    Article  MathSciNet  Google Scholar 

  9. Carrillo, B., Pan, X.H., Zhang, Q.S.: Decay and vanishing of some axially symmetric D-solution of the Navier–Stokes equations. J. Funct. Anal. 279(1), 108504, 49 (2020)

    Article  MathSciNet  Google Scholar 

  10. Carrillo, B., Pan, X.H., Zhang, Q.S., Zhao, N.: Decay and vanishing of some D-solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 237, 1383–1419 (2020)

    Article  MathSciNet  Google Scholar 

  11. Choe, H.J., Yang, M.: Local kinetic energy and singularities of the incompressible Navier–Stokes equations. J. Differ. Equ. 264, 1171–1191 (2018)

    Article  MathSciNet  Google Scholar 

  12. Fuchs, M., Zhong, X.: A note on a Liouville type result of Gilbarg and Weinberger for the stationary Navier–Stokes equations in 2D. J. Math. Sci. 178, 695–703 (2011)

    Article  MathSciNet  Google Scholar 

  13. Fuchs, M., Müller, J.: A Liouville theorem for stationary incompressible fluids of von mises type. Acta. Math. Sci. 39, 1–10 (2019)

    Article  MathSciNet  Google Scholar 

  14. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    Google Scholar 

  15. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems. Springer Monographs in Mathematics, 2nd edn., pp. 14–1018. Springer, New York (2011)

    Google Scholar 

  16. Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 381–404 (1978)

    MathSciNet  Google Scholar 

  17. Jiang, H., Zhao, C.: Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth. Adv. Differ. Equ. 3–4, 107–132 (2021)

    MathSciNet  Google Scholar 

  18. Jin, B., Kang, K.: Liouville theorem for the steady-state non-Newtonian Navier–Stokes equations in two dimensions. J. Math. Fluid Mech. 16, 275–292 (2014)

    Article  MathSciNet  Google Scholar 

  19. Kozono, H., Terasawa, Y., Wakasugi, Y.: A remark on Liouville-type theorems for the stationary Naiver–Stokes equations in three space dimensions. J. Funct. Anal. 272, 804–818 (2017)

    Article  MathSciNet  Google Scholar 

  20. Koch, G., Nadirashvili, N., Seregin, G., Šverák, V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203, 83–105 (2009)

    Article  MathSciNet  Google Scholar 

  21. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  Google Scholar 

  22. Liu, P.: Liouville-type theorems for the stationary incompressible inhomogeneous Hall-MHD and MHD equations,. Banach J. Math. Anal. 17, 13 (2023)

    Article  MathSciNet  Google Scholar 

  23. Nitti, N.D., Hounkpe, F., Schulz, S.: On Liouville-type theorems for the 2D stationary MHD equations. Nonlinearity 35, 870–888 (2022)

    Article  MathSciNet  Google Scholar 

  24. Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory. Chapman & Hall, Boca Raton (1999)

    Google Scholar 

  25. O’Neil, R.: Convolution operators and \(L_{p, q}\) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  Google Scholar 

  26. Politano, H., Pouquet, A., Sulem, P.L.: Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 2, 2931–2939 (1995)

    Article  MathSciNet  Google Scholar 

  27. Seregin, G.: Liouville type theorem for stationary Navier–Stokes equations. Nonlinearity 29, 2191–2195 (2016)

    Article  MathSciNet  Google Scholar 

  28. Seregin, G.: Remarks on Liouville type theorems for steady-state Navier–Stokes equations. St. Petersburg Math. J. 30(2), 321–328 (2019)

    Article  MathSciNet  Google Scholar 

  29. Schnack, D.: Lectures in Magnetohydrodynamics, with an Appendix on Extended MHD. Lecture Notes in Physics, pp. 16–323. Springe, Berlin (2009)

    Book  Google Scholar 

  30. Schulz, S.: Liouville type theorem for the stationary equations of magneto-hydrodynamics. Acta Math. Sci. 39, 491–497 (2019)

    Article  MathSciNet  Google Scholar 

  31. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser., Princeton Univ. Press, Princeton (1970)

    Google Scholar 

  32. Wang, W., Wang, Y.: Liouville-type theorems for the stationary MHD equations in 2D. Nonlinearity 32, 4483–4505 (2019)

    Article  MathSciNet  Google Scholar 

  33. Wang, W., Zhang, Z.: Regularity of weak solutions for the Navier–Stokes equations in the class \(L^\infty ({BMO} ^{-1})\),. Commun. Contem. 14, 1250020 (2012). (24)

    Article  MathSciNet  Google Scholar 

  34. Yuan, B., Xiao, Y.: Liouville-type theorems for the 3D stationary Navier–Stokes, MHD and Hall-MHD equations. J. Math. Anal. Appl. 491, 124343 (2020)

    Article  MathSciNet  Google Scholar 

  35. Zhang, G.: A note on Liouville theorem for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. 15, 771–782 (2013)

    Article  MathSciNet  Google Scholar 

  36. Zhao, C., Wang, J., Caraballo, T.: Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier–Stokes equations. J. Differ. Equ. 317, 474–494 (2022)

    Article  MathSciNet  Google Scholar 

  37. Zhao, C., Caraballo, T., Lukaszewicz, G.: Statistical solution and Liouville type theorem for the Klein–Gordon–Schrödinger equations. J. Differ. Equ. 281, 1–32 (2021)

    Article  Google Scholar 

  38. Zhao, C., Li, Y., Caraballo, T.: Trajectory statistical solutions and Liouville type equations for evolution equations: abstract results and applications. J. Differ. Equ. 269, 467–494 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zhao, C., Caraballo, T.: Asymptotic regularity of trajectory attractors and trajectory statistical solutions for three-dimensional globally modified Navier–Stokes equations. J. Differ. Equ. 266, 2705–2729 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their helpful comments on the initial manuscript. The second author was partially supported by Natural Science Foundation of Jiangsu Province (BK20201478) and Qing Lan Project of Jiangsu Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Guo, Z. Some Liouville-Type Results for the 3D Incompressible MHD Equations. J Geom Anal 34, 39 (2024). https://doi.org/10.1007/s12220-023-01480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01480-x

Keywords

Mathematics Subject Classification

Navigation