Abstract
In this paper we prove an isoperimetric inequality for the first twisted eigenvalue \(\lambda _{1,\gamma }^T(\Omega )\) of a weighted operator, defined as the minimum of the usual Rayleigh quotient when the trial functions belong to the weighted Sobolev space \(H_0^1(\Omega ,{d}\gamma )\) and have weighted mean value equal to zero in \(\Omega \). We are interested in positive measures \({d}\gamma =\gamma (x) {d}x\) for which we are able to identify the optimal sets, namely, the sets that minimize \(\lambda _{1,\gamma }^T(\Omega )\) among sets of given weighted measure. In the cases under consideration, the optimal sets are given by two identical and disjoint copies of the isoperimetric sets (for the weighted perimeter with respect to the weighted measure).
Similar content being viewed by others
Data Availability
Not applicable.
References
Alvino, A., Brock, F., Chiacchio, F., Mercaldo, A., Posteraro, M.R.: On weighted isoperimetric inequalities with non-radial densities. Appl. Anal. 98(10), 1935–1945 (2019)
Alvino, A., Brock, F., Chiacchio, F., Mercaldo, A., Posteraro, M.R.: The isoperimetric problem for a class of non-radial weights and applications. J. Differ. Equ. 267(12), 6831–6871 (2019)
Alvino, A., Brock, F., Chiacchio, F., Mercaldo, A., Posteraro, M.R.: Some isoperimetric inequalities with respect to monomial weights. ESAIM Control Optim. Calc. Var. 27(suppl.), Paper No. S3, 1–29 (2021)
Barbosa, L., Bérard, P.: Eigenvalue and “twisted’’ eigenvalue problems, applications to CMC surfaces. J. Math. Pures Appl. (9) 79(5), 427–450 (2000)
Borell, C.: The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30(2), 207–216 (1975)
Brandolini, B., Della Pietra, F., Nitsch, C., Trombetti, C.: Symmetry breaking in a constrained Cheeger type isoperimetric inequality. ESAIM Control Optim. Calc. Var. 21(2), 359–371 (2015)
Brandolini, B., Freitas, P., Nitsch, C., Trombetti, C.: Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem. Adv. Math. 228(4), 2352–2365 (2011)
Brock, F., Chiacchio, F., Mercaldo, A.: Weighted isoperimetric inequalities in cones and applications. Nonlinear Anal. 75(15), 5737–5755 (2012)
Bucur, D., Henrot, A.: Maximization of the second non-trivial Neumann eigenvalue. Acta Math. 222(2), 337–361 (2019)
Buslaev, A.P., Kondrat’ev, V.A., Nazarov, A.I.: On a family of extremal problems and related properties of an integral. (Russian. Russian summary) Mat. Zametki 64(6), 830–838 (1998); translation in Math. Notes 64(5–6), 719–725 (1999)
Cabré, X., Ros-Oton, X.: Sobolev and isoperimetric inequalities with monomial weights. J. Differ. Equ. 255(11), 4312–4336 (2013)
Cabré, X., Ros-Oton, X., Serra, J.: Sharp isoperimetric inequalities via the ABP method. J. Eur. Math. Soc. 18(12), 2971–2998 (2016)
Carlen, E.A., Kerce, C.: On the cases of equality in Bobkov’s inequality and Gaussian rearrangement. Calc. Var. Partial Differ. Equ. 13(1), 1–18 (2001)
Chambers, G.: Proof of the log-convex density conjecture. J. Eur. Math. Soc. 21(8), 2301–2332 (2019)
Chong, K.M., Rice, N.M.: Equimeasurable rearrangements of functions. In: Queen’s Papers in Pure and Applied Mathematics, No. 28. Queen’s University, Kingston (1971)
Cianchi, A., Pick, L.: Optimal Gaussian Sobolev embeddings. J. Funct. Anal. 256(11), 3588–3642 (2009)
Croce, G., Dacorogna, B.: On a generalized Wirtinger inequality. Discret. Contin. Dyn. Syst. 9(5), 1329–1341 (2003)
Croce, G., Henrot, A., Pisante, G., An isoperimetric inequality for a nonlinear eigenvalue problem. Annales de l’IHP (C), Non Linear Anal. 29, 21–34. Corrigendum to An isoperimetric inequality for a nonlinear eigenvalue problem. Ann. IHP (C). Non Linear Anal. 32(485–487), 2015 (2012)
Dacorogna, B., Gangbo, W., Subía, N.: Sur une généralisation de l’inégalité de Wirtinger. Ann. IHP Anal. Non Linear 9(1), 29–50 (1992)
Dahlberg, J., Dubbs, A., Newkirk, E., Tran, H.: Isoperimetric regions in the plane with density \(r^p\). New York J. Math. 16, 31–52 (2010)
Dean, P.: The constrained quantum mechanical harmonic oscillator. Proc. Camb. Philos. Soc. 62, 277–286 (1966)
De Giorgi, E.: Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I 5, 33–44 (1958)
Della Pietra, F., Piscitelli, G.: Saturation phenomena for some classes of nonlinear nonlocal eigenvalue problems. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31(1), 131–150 (2020)
Díaz, A., Harman, N., Howe, S., Thompson, D.: Isoperimetric problems in sectors with density. Adv. Geom. 12, 589–619 (2012)
Ehrhard, A.: Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes. Ann. Sci. École Norm. Sup. (4) 17(2), 317–332 (1984)
Figalli, A., Maggi, F.: On the isoperimetric problem for radial log-convex densities. Calc. Var. Partial Differ. Equ. 48(3–4), 447–489 (2013)
Freitas, P., Henrot, A.: On the first twisted Dirichlet eigenvalue. Commun. Anal. Geom. 12(5), 1083–1103 (2004)
Greco, A., Lucia, M.: Laplacian eigenvalues for mean zero functions with constant Dirichlet data. Forum Math. 20(5), 763–782 (2008)
Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006)
Henrot, A., Pierre, M.: Shape Variation and Optimization, A Geometrical Analysis. Tracts in Mathematics, 28. EMS, Zurich (2018)
Ivanisvili, P., Volberg, A.: Improving Beckner’s bound via Hermite functions. Anal. PDE 10(4), 929–942 (2017)
Kufner, A., Opic, B.: How to define reasonably weighted Sobolev spaces. Comment. math. Univ. Carol. 25(3), 537–554 (1984)
Landau, L.J.: Ratios of Bessel functions and roots of \(\alpha J_\nu (x)+xJ^{\prime }_\nu (x)=0\). J. Math. Anal. Appl. 240(1), 174–204 (1999)
Lebedev, N.N.: Special Functions and Their Applications, revised edn. Dover, New York. Translated from the Russian and edited by Richard A. Unabridged and corrected republication, Silverman (1972)
Maderna, C., Salsa, S.: Sharp estimates of solutions to a certain type of singular elliptic boundary value problems in two dimensions. Appl. Anal. 12(4), 307–321 (1981)
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.) NIST Handbook of Mathematical Functions. With 1 CD-ROM (Windows, Macintosh and UNIX). U.S. Department of Commerce, National Institute of Standards and Technology, Cambridge University Press, Washington/Cambridge (2010)
Pólya, G., Szegő, G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton University Press, Princeton (1951)
Rosales, C., Cañete, A., Bayle, V., Morgan, F.: On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differ. Equ. 31(1), 27–46 (2008)
Szegő, G.: Inequalities for certain eigenvalues of a membrane of given area. J. Ration. Mech. Anal. 3, 343–356 (1954)
Talenti, G.: A weighted version of a rearrangement inequality. Ann. Univ. Ferrara Sez. VII (N.S.) 43:121–133 (1998), 1997
Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1995)
Weinberger, H.F.: An isoperimetric inequality for the \(N\)-dimensional free membrane problem. J. Ration. Mech. Anal. 5, 633–636 (1956)
Acknowledgements
The authors want to warmly thank the three referees who allow them to improve the quality of the paper. A.H. wants to thank the Dipartimento di Matematica e Applicazioni “R. Caccioppoli” for a nice and fruitful stay in July 2022. B.B. has been supported by “FFR2023 Barbara Brandolini”, Università degli Studi di Palermo. A.M. and M.R.P. have been partially supported by MUR through research project PRIN2017 “Direct and Inverse problems for PDE: theoretical aspects and applications”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Brandolini, B., Henrot, A., Mercaldo, A. et al. Isoperimetric Sets for Weighted Twisted Eigenvalues. J Geom Anal 33, 361 (2023). https://doi.org/10.1007/s12220-023-01420-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12220-023-01420-9