Skip to main content
Log in

Isoperimetric Sets for Weighted Twisted Eigenvalues

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove an isoperimetric inequality for the first twisted eigenvalue \(\lambda _{1,\gamma }^T(\Omega )\) of a weighted operator, defined as the minimum of the usual Rayleigh quotient when the trial functions belong to the weighted Sobolev space \(H_0^1(\Omega ,{d}\gamma )\) and have weighted mean value equal to zero in \(\Omega \). We are interested in positive measures \({d}\gamma =\gamma (x) {d}x\) for which we are able to identify the optimal sets, namely, the sets that minimize \(\lambda _{1,\gamma }^T(\Omega )\) among sets of given weighted measure. In the cases under consideration, the optimal sets are given by two identical and disjoint copies of the isoperimetric sets (for the weighted perimeter with respect to the weighted measure).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Alvino, A., Brock, F., Chiacchio, F., Mercaldo, A., Posteraro, M.R.: On weighted isoperimetric inequalities with non-radial densities. Appl. Anal. 98(10), 1935–1945 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvino, A., Brock, F., Chiacchio, F., Mercaldo, A., Posteraro, M.R.: The isoperimetric problem for a class of non-radial weights and applications. J. Differ. Equ. 267(12), 6831–6871 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvino, A., Brock, F., Chiacchio, F., Mercaldo, A., Posteraro, M.R.: Some isoperimetric inequalities with respect to monomial weights. ESAIM Control Optim. Calc. Var. 27(suppl.), Paper No. S3, 1–29 (2021)

  4. Barbosa, L., Bérard, P.: Eigenvalue and “twisted’’ eigenvalue problems, applications to CMC surfaces. J. Math. Pures Appl. (9) 79(5), 427–450 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borell, C.: The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30(2), 207–216 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandolini, B., Della Pietra, F., Nitsch, C., Trombetti, C.: Symmetry breaking in a constrained Cheeger type isoperimetric inequality. ESAIM Control Optim. Calc. Var. 21(2), 359–371 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandolini, B., Freitas, P., Nitsch, C., Trombetti, C.: Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem. Adv. Math. 228(4), 2352–2365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brock, F., Chiacchio, F., Mercaldo, A.: Weighted isoperimetric inequalities in cones and applications. Nonlinear Anal. 75(15), 5737–5755 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bucur, D., Henrot, A.: Maximization of the second non-trivial Neumann eigenvalue. Acta Math. 222(2), 337–361 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buslaev, A.P., Kondrat’ev, V.A., Nazarov, A.I.: On a family of extremal problems and related properties of an integral. (Russian. Russian summary) Mat. Zametki 64(6), 830–838 (1998); translation in Math. Notes 64(5–6), 719–725 (1999)

  11. Cabré, X., Ros-Oton, X.: Sobolev and isoperimetric inequalities with monomial weights. J. Differ. Equ. 255(11), 4312–4336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cabré, X., Ros-Oton, X., Serra, J.: Sharp isoperimetric inequalities via the ABP method. J. Eur. Math. Soc. 18(12), 2971–2998 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carlen, E.A., Kerce, C.: On the cases of equality in Bobkov’s inequality and Gaussian rearrangement. Calc. Var. Partial Differ. Equ. 13(1), 1–18 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chambers, G.: Proof of the log-convex density conjecture. J. Eur. Math. Soc. 21(8), 2301–2332 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chong, K.M., Rice, N.M.: Equimeasurable rearrangements of functions. In: Queen’s Papers in Pure and Applied Mathematics, No. 28. Queen’s University, Kingston (1971)

  16. Cianchi, A., Pick, L.: Optimal Gaussian Sobolev embeddings. J. Funct. Anal. 256(11), 3588–3642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Croce, G., Dacorogna, B.: On a generalized Wirtinger inequality. Discret. Contin. Dyn. Syst. 9(5), 1329–1341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Croce, G., Henrot, A., Pisante, G., An isoperimetric inequality for a nonlinear eigenvalue problem. Annales de l’IHP (C), Non Linear Anal. 29, 21–34. Corrigendum to An isoperimetric inequality for a nonlinear eigenvalue problem. Ann. IHP (C). Non Linear Anal. 32(485–487), 2015 (2012)

  19. Dacorogna, B., Gangbo, W., Subía, N.: Sur une généralisation de l’inégalité de Wirtinger. Ann. IHP Anal. Non Linear 9(1), 29–50 (1992)

    MATH  Google Scholar 

  20. Dahlberg, J., Dubbs, A., Newkirk, E., Tran, H.: Isoperimetric regions in the plane with density \(r^p\). New York J. Math. 16, 31–52 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Dean, P.: The constrained quantum mechanical harmonic oscillator. Proc. Camb. Philos. Soc. 62, 277–286 (1966)

    Article  MathSciNet  Google Scholar 

  22. De Giorgi, E.: Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I 5, 33–44 (1958)

  23. Della Pietra, F., Piscitelli, G.: Saturation phenomena for some classes of nonlinear nonlocal eigenvalue problems. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31(1), 131–150 (2020)

  24. Díaz, A., Harman, N., Howe, S., Thompson, D.: Isoperimetric problems in sectors with density. Adv. Geom. 12, 589–619 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Ehrhard, A.: Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes. Ann. Sci. École Norm. Sup. (4) 17(2), 317–332 (1984)

  26. Figalli, A., Maggi, F.: On the isoperimetric problem for radial log-convex densities. Calc. Var. Partial Differ. Equ. 48(3–4), 447–489 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Freitas, P., Henrot, A.: On the first twisted Dirichlet eigenvalue. Commun. Anal. Geom. 12(5), 1083–1103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Greco, A., Lucia, M.: Laplacian eigenvalues for mean zero functions with constant Dirichlet data. Forum Math. 20(5), 763–782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006)

  30. Henrot, A., Pierre, M.: Shape Variation and Optimization, A Geometrical Analysis. Tracts in Mathematics, 28. EMS, Zurich (2018)

  31. Ivanisvili, P., Volberg, A.: Improving Beckner’s bound via Hermite functions. Anal. PDE 10(4), 929–942 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kufner, A., Opic, B.: How to define reasonably weighted Sobolev spaces. Comment. math. Univ. Carol. 25(3), 537–554 (1984)

    MathSciNet  MATH  Google Scholar 

  33. Landau, L.J.: Ratios of Bessel functions and roots of \(\alpha J_\nu (x)+xJ^{\prime }_\nu (x)=0\). J. Math. Anal. Appl. 240(1), 174–204 (1999)

    Article  MathSciNet  Google Scholar 

  34. Lebedev, N.N.: Special Functions and Their Applications, revised edn. Dover, New York. Translated from the Russian and edited by Richard A. Unabridged and corrected republication, Silverman (1972)

  35. Maderna, C., Salsa, S.: Sharp estimates of solutions to a certain type of singular elliptic boundary value problems in two dimensions. Appl. Anal. 12(4), 307–321 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.) NIST Handbook of Mathematical Functions. With 1 CD-ROM (Windows, Macintosh and UNIX). U.S. Department of Commerce, National Institute of Standards and Technology, Cambridge University Press, Washington/Cambridge (2010)

  37. Pólya, G., Szegő, G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton University Press, Princeton (1951)

  38. Rosales, C., Cañete, A., Bayle, V., Morgan, F.: On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differ. Equ. 31(1), 27–46 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Szegő, G.: Inequalities for certain eigenvalues of a membrane of given area. J. Ration. Mech. Anal. 3, 343–356 (1954)

    MathSciNet  MATH  Google Scholar 

  40. Talenti, G.: A weighted version of a rearrangement inequality. Ann. Univ. Ferrara Sez. VII (N.S.) 43:121–133 (1998), 1997

  41. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  42. Weinberger, H.F.: An isoperimetric inequality for the \(N\)-dimensional free membrane problem. J. Ration. Mech. Anal. 5, 633–636 (1956)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors want to warmly thank the three referees who allow them to improve the quality of the paper. A.H. wants to thank the Dipartimento di Matematica e Applicazioni “R. Caccioppoli” for a nice and fruitful stay in July 2022. B.B. has been supported by “FFR2023 Barbara Brandolini”, Università degli Studi di Palermo. A.M. and M.R.P. have been partially supported by MUR through research project PRIN2017 “Direct and Inverse problems for PDE: theoretical aspects and applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Henrot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandolini, B., Henrot, A., Mercaldo, A. et al. Isoperimetric Sets for Weighted Twisted Eigenvalues. J Geom Anal 33, 361 (2023). https://doi.org/10.1007/s12220-023-01420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01420-9

Keywords

Mathematics Subject Classification

Navigation