Skip to main content
Log in

Global Strong Solutions to the Compressible Nematic Liquid Crystal Flows with Large Oscillations and Vacuum in 2D Bounded Domains

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We investigate a simplified compressible nematic liquid crystal flow in two-dimensional (2D) bounded domains with Navier slip boundary conditions for velocity and Neumann boundary condition for orientation field. Based on delicate energy method and the structure of the model under consideration, we show the global existence and uniqueness of strong solutions when the initial total energy is suitably small. Our result may be regarded as an extension of the 2D Cauchy problem due to Wang (J Math Fluid Mech 18(3):539–569, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aramaki, J.: \(L^p\) theory for the div-curl system. Int. J. Math. Anal. 8(6), 259–271 (2014)

    Article  MathSciNet  Google Scholar 

  2. Cao, Y.: Global classical solutions to the compressible Navier-Stokes equations with Navier-type slip boundary condition in 2D bounded domains. arXiv:2102.10235

  3. Ericksen, J.L.: Hydrostatic theory of liquid crystal. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  5. Gong, H., Li, J., Liu, X.G., Zhang, X.: Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum. Commun. Math. Sci. 18(7), 1891–1909 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hieber, M., Prüss, J.W.: Modeling and analysis of the Ericksen-Leslie equations for nematic liquid crystal flows. In: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1075–1134. Springer, Cham (2018)

    Chapter  Google Scholar 

  7. Hu, X., Wu, H.: Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45(5), 2678–2699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, T., Wang, C., Wen, H.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252(3), 2222–2265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, F., Jiang, S., Wang, D.: On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J. Funct. Anal. 265(12), 3369–3397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch. Ration. Mech. Anal. 214(2), 403–451 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J., Xu, Z., Zhang, J.: Global existence of classical solutions with large oscillations and vacuum to the three-dimensional compressible nematic liquid crystal flows. J. Math. Fluid Mech. 20(4), 2105–2145 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lieberman, G.M.: Oblique Derivative Problems for Elliptic Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2013)

    Book  MATH  Google Scholar 

  14. Lin, F.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Math. 42(6), 789–814 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, F., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, F., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discret. Contin. Dyn. Syst. 2(1), 1–23 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, F., Liu, C.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154(2), 135–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, F., Wang, C.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2029), 20130361 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Lin, J., Lai, B., Wang, C.: Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three. SIAM J. Math. Anal. 47(4), 2952–2983 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Y.: On the global existence of classical solutions for compressible nematic liquid crystal flows with vacuum. Z. Angew. Math. Phys. 71(1). Paper No. 16 (2020)

  21. Liu, Y., Zheng, S., Li, H., Liu, S.: Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 37(7), 3921–3938 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, Y., Zhong, X.: Global existence of strong solutions with large oscillations and vacuum to the compressible nematic liquid crystal flows in 3D bounded domains. arXiv:2204.06227

  23. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13(2), 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  24. Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  25. von Wahl, W.: Estimating \(\nabla u\) by div \(u\) and curl \(u\). Math. Methods Appl. Sci. 15(2), 123–143 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, D., Yu, C.: Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch. Ration. Mech. Anal. 204(3), 881–915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, T.: Global existence and large time behavior of strong solutions to the 2-D compressible nematic liquid crystal flows with vacuum. J. Math. Fluid Mech. 18(3), 539–569 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, G., Tan, Z.: Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals. J. Differ. Equ. 264(11), 6603–6632 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zarnescu, A.: Mathematical problems of nematic liquid crystals: between dynamical and stationary problems. Philos. Trans. R. Soc. A 379(2201). Paper No. 20200432 (2021)

  30. Zlotnik, A.A.: Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations. Differ. Equ. 36(5), 701–716 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the reviewers for careful reading and helpful suggestions which led to an improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by National Natural Science Foundation of China (Nos. 11901474, 12071359).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhong, X. Global Strong Solutions to the Compressible Nematic Liquid Crystal Flows with Large Oscillations and Vacuum in 2D Bounded Domains. J Geom Anal 33, 319 (2023). https://doi.org/10.1007/s12220-023-01386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01386-8

Keywords

Mathematics Subject Classification

Navigation