Skip to main content
Log in

An Atomic Representation for Hardy Classes of Solutions to Nonhomogeneous Cauchy–Riemann Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We develop a representation of the second kind for certain Hardy classes of solutions to nonhomogeneous Cauchy–Riemann equations and use it to show that boundary values in the sense of distributions of these functions can be represented as the sum of an atomic decomposition and an error term. We use the representation to show continuity of the Hilbert transform on this class of distributions and use it to show that solutions to a Schwarz-type boundary value problem can be constructed in the associated Hardy classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Astala, K., Iwaniec, T., Martin, G.: Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series, vol. 48, p. xviii+677. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. Balk, M.: Polyanalytic functions. Math. Res. 63, 197 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Begehr, H.: Complex analytic methods for partial differential equations. An introductory text, p. x+273. World Scientific Publishing Co., Inc., River Edge (1994). https://doi.org/10.1142/2162

    Book  MATH  Google Scholar 

  4. Begehr, H., Schmersau, D.: The Schwarz problem for polyanalytic functions. Z. Anal. Anwendungen 24(2), 341–351 (2005). https://doi.org/10.4171/ZAA/1244

    Article  MathSciNet  MATH  Google Scholar 

  5. Coifman, R.: A real variable characterization of Hp. Studia Math. 51, 269–274 (1974). https://doi.org/10.4064/sm-51-3-269-274

    Article  MathSciNet  MATH  Google Scholar 

  6. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83(4), 569–645 (1977). https://doi.org/10.1090/S0002-9904-1977-14325-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Colzani, L.: Hardy and Lipschitz spaces on unit spheres. Thesis (Ph.D.). Washington University in St. Louis. ProQuest LLC, Ann Arbor, MI, p. 120 (1982). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004 &rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation &res_dat=xri:pqdiss &rft_dat=xri:pqdiss:8302335

  8. Du, Z., Guo, G., Wang, N.: Decompositions of functions and Dirichlet problems in the unit disc. J. Math. Anal. Appl. 362(1), 1–16 (2010). https://doi.org/10.1016/j.jmaa.2009.07.048

    Article  MathSciNet  MATH  Google Scholar 

  9. Duren, P.: Theory of Hp spaces. Pure and Applied Mathematics, vol. 38, p. xii+258. Academic Press, New York-London (1970)

    MATH  Google Scholar 

  10. Hoepfner, G., Hounie, J.: Atomic decompositions of holomorphic Hardy spaces in S1 and applications. Lecture Notes of Seminario Interdisciplinare di Matematica 7, 189–206 (2008)

    MATH  Google Scholar 

  11. Klimentov, S.: Граничные своĭ ства обобщенных аналитических функциĭ. Vol. 7 Итоги Науки. Юг России. Математическая Монография [Progress in Science. South Russia. Mathematical Monograph]. Yuzhnyĭ Matematicheskiĭ Institut, Vladikavkazskiĭ Nauchnyĭ Tsentr, Rossiĭskaya Akademiya Nauk i RSO-A, Vladikavkaz, p. 200 (2014).

  12. Klimentov, S.: The Riemann-Hilbert problem in Hardy classes for general first-order elliptic systems. Izv. Vyssh. Uchebn. Zaved. Mat. 6, 36–47 (2016). https://doi.org/10.3103/s1066369x16060049

    Article  MathSciNet  MATH  Google Scholar 

  13. Koosis, P.: Introduction to Hp spaces. Cambridge Tracts in Mathematics. With two appendices by V. P. Havin [Viktor Petrovich Khavin], vol. 115, 2nd edn., p. xiv+289. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Ku, M., He, F., Wang, Y.: Riemann–Hilbert problems for Hardy space of metaanalytic functions on the unit disc. Complex Anal. Oper. Theory 12(2), 457–474 (2018). https://doi.org/10.1007/s11785-017-0705-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Mashreghi, J.: Representation theorems in Hardy spaces. London Mathematical Society Student Texts, vol. 74, p. xii+372. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511814525

    Book  MATH  Google Scholar 

  16. Stein, E.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III, vol. 43, p. xiv+695. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  17. Vekua, I.: Generalized analytic functions, p. xxix+668. Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., Oxford (1962)

    Google Scholar 

  18. Wang, Y.: On Hilbert-type boundary-value problem of poly-Hardy class on the unit disc. Complex Var. Elliptic Equ. 58(4), 497–509 (2013). https://doi.org/10.1080/17476933.2011.636809

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Blair.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blair, W.L. An Atomic Representation for Hardy Classes of Solutions to Nonhomogeneous Cauchy–Riemann Equations. J Geom Anal 33, 307 (2023). https://doi.org/10.1007/s12220-023-01374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01374-y

Keywords

Mathematics Subject Classification

Navigation