Skip to main content
Log in

The Yamabe Problem for Distributional Curvature

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider Yamabe problem for a smooth manifold with a \(W^{1,p}\) metric. The curvature is considered as a distribution since our metric is not twice differentiable. We prove that for any metric g which is \(W^{1,p}\) on M such that the Yamabe constant of (Mg) is less than that of the standard sphere, there exists a \(W^{1,p}\) metric on M which is conformal to g and has constant distributional scalar curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutagawa, K., Botvinnik, B.: Yamabe metrics on cylindrical manifolds. Geom. Funct. Anal. 12(2), 259–333 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Akutagawa, K., Carron, G., Mazzeo, R.: The Yamabe problem on stratified spaces. Geom. Funct. Anal. 24(4), 1039–1079 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Akutagawa, K., Carron, G., Mazzeo, R.: The Yamabe problem on Dirichlet spaces. In: Ji, L., Poon, Y.-S., Yau, S.-T. (eds.) Tsinghua Lectures in Mathematics. Advanced Lectures in Mathematics, vol. 45, pp. 101–122. International Press, Boston (2019)

    Google Scholar 

  4. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    MATH  Google Scholar 

  5. Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics, Springer, Berlin (1998)

    MATH  Google Scholar 

  7. Aleksandrov, A.D., Berestovskii, V.N., Nikolaev, I.G.: Generalized Riemannian spaces. Uspekhi Mat. Nauk 41(3(249)), 3–44, 240 (1986)

  8. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

  9. Bamler, R.: A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature. Math. Res. Lett. 23(2), 325–337 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Barrabès, C., Israel, W.: Thin shells in general relativity and cosmology: the lightlike limit. Phys. Rev. D 43, 1129–1142 (1991)

    MathSciNet  Google Scholar 

  11. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    MATH  Google Scholar 

  13. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom. 54(1), 13–35 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54(1), 37–74 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Cheeger, J., Jiang, W., Naber, A.: Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below. Ann. Math. (2) 193(2), 407–538 (2021)

  17. Cheeger, J., Naber, A.: Lower bounds on Ricci curvature and quantitative behavior ofsingular sets. Invent. Math. 191(2), 321–339 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Chu, J., Lee, M.C.: Ricci–Deturck flow from rough metrics and applications. Arxiv Preprint (2022). arXiv:2204.05843

  19. Clarke, C.J.S., Vickers, J.A., Wilson, J.P.: Generalized functions and distributional curvature of cosmic strings. Class. Quant. Grav. 13, 2485 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Clarke, C.J.S., Dray, T.: Junction conditions in null hypersurfaces. Class. Quant. Grav. 4, 265–275 (1987)

    MATH  Google Scholar 

  21. Colding, T.H., Naber, A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. Math. (2) 176(2), 1173–1229 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Gromov, M.: Dirac and Plateau billiards in domains with corners. Cent. Eur. J. Math. 12(8), 1109–1156 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Geroch, R.P., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017–1031 (1987)

    MathSciNet  Google Scholar 

  24. Han, Q., Li, X., Li, Y.: Asymptotic expansions ofsolutions ofthe Yamabe equation and the \( _k\)-Yamabe equation near isolated singular points. Commun. Pure Appl. Math. 74(9), 1915–1970 (2021)

    MATH  Google Scholar 

  25. Huang, L.H., Lee, D., Sormani, C.: Intrinsic flat stability of the Positive Mass Theorem for graphical hypersurfaces in Euclidean space. J. Riene Angew. Math. Crelle’s J. 727, 269–299 (2017)

    MATH  Google Scholar 

  26. Ju, T., Viaclovsky, J.: Conformally prescribed scalar curvature on orbifolds. Commun. Math. Phys. 398, 877–923 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Jiang, W., Naber, A.: \(L^2\) curvature bounds on manifolds with bounded Ricci curvature. Ann. Math. (2) 193(1), 107–222 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Jiang, W., Sheng, W., Zhang, H.: Weak scalar curvature lower bounds along Ricci flow. Arxiv Preprint (2021). arXiv:2110.12157

  29. Jiang, W., Sheng, W., Zhang, H.: Removable singularity of positive mass theorem with continuous metrics. Math. Z. 302(2), 839–874 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. Math. 2(101), 317–331 (1975)

    MathSciNet  MATH  Google Scholar 

  31. Lee, D.: A positive mass theorem for Lipschitz metrics with small singular sets. Proc. Am. Math. Soc. 141(11), 3997–4004 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Lee, D.: Geometric Relativity. Graduate Studies in Mathematics, vol. 201. American Mathematical Society, Providence (2019)

  33. Lee, D., Lefloch, P.G.: The positive mass theorem for manifolds with distributional curvature. Commun. Math. Phys. 339(1), 99–120 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37–91 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Lee, M.C., Tam, L.F.: Continuous metrics and a conjecture of Schoen. Arxiv Preprint (2021). arXiv:2111.05582

  36. Lee, M.C., Naber, A., Neumayer, R.: \(d_p\)-convergence and \(\epsilon \)-regularity theorems for entropy and scalar curvature lower bounds. Geom. Topol. 27(1), 227–350 (2023)

    MathSciNet  MATH  Google Scholar 

  37. LeFloch, P.G., Mardare, C.: Definition and weak stability of spacetimes with distributional curvature. Port. Math. 64, 535–573 (2007)

    MathSciNet  MATH  Google Scholar 

  38. LeFloch, P., Sormani, C.: The nonlinear stability of rotationally symmetric spaces with low regularity. J. Funct. Anal. 268(7), 2005–2065 (2015) (English summary)

  39. Li, C., Mantoulidis, C.: Positive scalar curvature with skeleton singularities. Math. Ann. 374(1–2), 99–131 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Loewner, C., Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations. In: Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers), pp. 245–272. Academic Press, New York (1974)

  41. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Marques, F.: Isolated singularities of solutions to the Yamabe equation. Calc. Var. Partial Differ. Equ. 32(3), 349–371 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Mazzeo, R., Pacard, F.: Constant scalar curvature metrics with isolated singularities. Duke Math. J. 99, 353–418 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Mazzeo, R., Pollack, D., Uhlenbeck, K.: Moduli spaces of singular Yamabe metrics. J. Am. Math. Soc. 9(2), 303–344 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Mars, M., Senovilla, J.M.: Geometry of general hypersurfaces in spacetime: junction conditions. Class. Quant. Grav. 10, 1865–1897 (1993)

    MathSciNet  MATH  Google Scholar 

  46. McFeron, D., Székelyhidi, G.: On the positive mass theorem for manifolds with corners. Commun. Math. Phys. 313(2), 425–443 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Miao, P.: Positive Mass Theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6(6), 1163–1182 (2002)

    MathSciNet  Google Scholar 

  48. Burkhardt-Guim, P.: Pointwise lower scalar curvature bounds for \(C^0\) metrics via regularizing Ricci flow. Geom. Funct. Anal. 29(6), 1703–1772 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Penrose, R.: The geometry of impulsive gravitational waves, in “General Relativity”. In: O’Raifeartaigh, L. (ed.) Papers in Honor of J.L. Synge, pp. 101–115. Clarendon Press, Oxford (1972)

  50. Raju, C.K.: Distributional matter tensors in relativity. In: Proceedings of 5th Marcel Grossmann Meeting on General Relativity, Part A, B, vol. 1989. Perth. World Scientific Publishing, Teaneck, pp. 419–422 (1988)

  51. Schoen, R.: Conformai deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    MATH  Google Scholar 

  52. Schoen, R.: The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Commun. Pure Appl. Math. 41, 317–392 (1988)

    MathSciNet  MATH  Google Scholar 

  53. Schoen, R., Yau, S.T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92, 47–72 (1988)

    MathSciNet  MATH  Google Scholar 

  54. Shi, Y., Tam, L.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62(1), 79–125 (2002)

    MathSciNet  MATH  Google Scholar 

  55. Shi, Y., Tam, L.: Scalar curvature and singular metrics. Pac. J. Math. 293(2), 427–470 (2018)

    MathSciNet  MATH  Google Scholar 

  56. Simon, M.: Deformation of \(C^0\) Riemannian metrics in the direction of their Ricci curvature. Commun. Anal. Geom. 10(5), 1033–1074 (2002)

    MATH  Google Scholar 

  57. Sormani, C., et al.: Conjecture on convergence and scalar curvature. Arxiv Preprint. arXiv:2103.10093

  58. Sormani, C., Wenger, S.: The intrinsic flat distance between Riemannian manifolds and integral current spaces. J. Differ. Geom. 87, 117–199 (2011)

    MathSciNet  MATH  Google Scholar 

  59. Steinbauer, R., Vickers, J.A.: The use of generalized functions and distributions in general relativity. Class. Quant. Grav. 23, R91–R114 (2006)

    MathSciNet  MATH  Google Scholar 

  60. Steinbauer, R., Vickers, J.A.: On the Geroch-Traschen class of metrics. Class. Quantum Grav. 26(065001), 1–19 (2009)

    MathSciNet  MATH  Google Scholar 

  61. Sturm, K.-T.: A curvature-dimension condition for metric measure spaces. C. R. Math. Acad. Sci. Paris 342(3), 197–200 (2006)

    MathSciNet  MATH  Google Scholar 

  62. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    MathSciNet  MATH  Google Scholar 

  63. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    MathSciNet  MATH  Google Scholar 

  64. Taub, A.H.: Spacetimes with distribution-valued curvature tensors. J. Math. Phys. 21, 1423–1431 (1980)

    MathSciNet  Google Scholar 

  65. Trudinger, N.: Remarks concerning the conformai deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968)

    MATH  Google Scholar 

  66. Trudinger, N.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27, 265–308 (1973)

  67. Vickers, J.A.: Distributional geometry in general relativity. J. Geom. Phys. 62(3), 692–705 (2012)

    MathSciNet  MATH  Google Scholar 

  68. Xiong, J., Zhang, L.: Isolated singularities of solutions to the Yamabe equation in dimension 6. Int. Math. Res. Not. 2022(12), 9571–9597 (2022)

    MathSciNet  MATH  Google Scholar 

  69. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Key R &D Program of China (No. 2022YFA1005500) and the National Key R &D Program of China (No. 2020YFA0713100). The author was supported in part by NSF in China (No. 12071425). The author would like to express his sincere gratitude to Wenshuai Jiang and Weimin Sheng for their guidance and encouragement, and to Xi Zhang and Ting Zhang for many usefulsuggestions. He also thanks Xucheng Yu for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiyu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H. The Yamabe Problem for Distributional Curvature. J Geom Anal 33, 312 (2023). https://doi.org/10.1007/s12220-023-01366-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01366-y

Keywords

Mathematics Subject Classification

Navigation