Skip to main content
Log in

Oldroyd-B Model with High Weissenberg Number and Fractional Velocity Dissipation

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper focuses on a high Weissenberg number Oldroyd-B model of complex fluids with fractional frequency velocity dissipation. Mathematically the fluid velocity u satisfies the Navier–Stokes equations with fractional dissipation \((-\Delta )^\alpha u\) while the equation of the non-Newtonian tensor \(\tau \) involves no diffusion or damping mechanism. The aim here is to solve the small-data global well-posedness and stability problem with the least amount of dissipation and minimal regularity requirement. We are able to establish the desired well-posedness and stability result in a hybrid homogeneous Besov setting for any fractional power in the range \(1/2\le \alpha \le 1\). To deal with the difficulties due to the weak velocity dissipation and the lack of diffusion or damping in the \(\tau \)-equation, we exploit the coupling and interaction of this Oldroyd-B model to reveal the hidden wave structure and make extensive use of the associated smoothing and stabilizing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  2. Bejaoui, O., Majdoub, M.: Global weak solutions for some Oldroyd models. J. Differ. Equ. 254, 660–685 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymetric Liquids, Vol. 1, Fluid Mechanics, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  4. Cannone, M.: Harmonic Analysis Tools for Solving the Incompressible Navier-Stokes Equations, Handbook of Mathematical Fluid Dynamics, vol. III. North-Holland, Amsterdam (2004)

    MATH  Google Scholar 

  5. Cannone, M.: A generalization of a theorem by Kato on Naiver-Stokes equations. Revista Matemätica Iberoamericana 13, 515–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cannone, M., Meyer, Y., Planchon, F.: Solutions autosimilaires des équations de Navier-Stokes, Séminaire “Équations aux Dérivées Partielles" de l’École polytechnique, Exposé VIII, (1993–1994)

  7. Chemin, J.Y., Masmoudi, N.: About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Q., Hao, X.: Global well-posedness in the critical Besov spaces for the incompressible Oldroyd-B model without damping mechanism. J. Math. Fluid Mech. 21, Paper No. 42 (2019)

  9. Chen, Q., Miao, C.: Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal. 68, 1928–1939 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, P.: Lagrangian-Eulerian methods for uniqueness in hydrodynamic systems. Adv. Math. 278, 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, P.: Analysis of Hydrodynamic Models, CBMS-NSF Regional Conference Series in Applied Mathematics, 90 SIAM (2017)

  12. Constantin, P., Kliegl, M.: Note on global regularity for two dimensional Oldroyd-B fluids stress. Arch. Ration. Mech. Anal. 206, 725–740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, P., Sun, W.: Remarks on Oldroyd-B and related complex fluid models. Commun. Math. Sci. 10, 33–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, P., Wu, J., Zhao, J., Zhu, Y.: High Reynolds number and high Weissenberg number Oldroyd-B model with dissipation. J. Evol. Equ. 21, 2787–2806 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Danchin, R.: Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Danchin, R.: Global existence in critical sapaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elgindi, T.M., Rousset, F.: Global regularity for some Oldroyd-B type models. Commun. Pure Appl. Math. 68, 2005–2021 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elgindi, T.M., Liu, J.: Global wellposeness to the generalized Oldroyd type models in \({\mathbb{R} }^3\). J. Differ. Equ. 259, 1958–1966 (2015)

    Article  MATH  Google Scholar 

  19. Fang, D., Hieber, M., Zi, R.: Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters. Math. Ann. 357, 687–709 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fang, D., Zi, R.: Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J. Math. Anal. 48, 1054–1084 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fernandez-Cara, E., Guillén, F., Ortega, R.R.: Existence et unicité de solution forte locale en temps pour des fluides non newtoniens de type Oldroyd (version \(L^s-L^r\)). C. R. Acad. Sci. Paris Sér. I Math. 319, 411–416 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guillopé, C., Saut, J.C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guillopé, C., Saut, J.C.: Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér. 24, 369–401 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hieber, M., Wen, H., Zi, R.: Optimal decay rates for solutions to the incompressible Oldryod-B model in \({\mathbb{R} }^3\). Nonlinearity 32, 833–852 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, D., Lelievre, T.: New entropy estimates for Oldroyd-B and related models. Commun. Math. Sci. 5, 909–916 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. La, J.: On diffusive 2D Fokker-Planck-Navier-Stokes systems. Arch. Ration. Mech. Anal. 235, 1531–1588 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. La, J.: Global well-posedness of strong solutions of Doi model with large viscous stress. J. Nonlinear Sci. 29, 1891–1917 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, F., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miao, C., Wu, J., Zhang, Z.: Littlewood-Paley Theory and Its Application in Hydrodynamic Equations (Chinese Edition). Science Press, Beijing, China (2012)

  31. Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. Ser. B 21, 131–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lei, Z., Masmoudi, N., Zhou, Y.: Remarks on the blowup criteria for Oldroyd models. J. Differ. Equ. 248, 328–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oldroyd, J.G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Edinb. Sect. A 245, 278–297 (1958)

    MathSciNet  MATH  Google Scholar 

  34. Wan, R.: Some new global results to the incompressible Oldroyd-B model. Z. Angew. Math. Phys., 70, Art. 28 (2019)

  35. Wu, J., Zhao, J.: Global regularity for the generalized incompressible Oldroyd-B model with only stress tensor dissipation in critical Besov spaces. J. Differ. Equ. 316, 641–686 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ye, Z.: On the global regularity of the 2D Oldroyd-B-type model. Ann. Mat. Pura Appl. 198, 465–489 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ye, Z., Xu, X.: Global regularity for the 2D Oldroyd-B model in the corotational case. Math. Methods Appl. Sci. 39, 3866–3879 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhai, X.: Global solutions to the n-dimensional incompressible Oldroyd-B model without damping mechanism. J. Math. Phys., 62, Paper No. 021503 (2021)

  39. Zhu, Y.: Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J. Funct. Anal. 274, 2039–2060 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zi, R., Fang, D., Zhang, T.: Global solution to the incompressible Oldroyd-B type model in the critical \(L^p\) framework: the case of the non-small coupling paramrter. Arch. Ration. Mech. Anal. 213, 651–687 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Jiefeng Zhao was partially supported by the National Natural Science Foundation of China (Nos.11901165, 11971446) and the Doctoral Fund of HPU (No.B2016-61). The work of Jiahong Wu was partially supported by NSF grant DMS 2104682 and DMS 2309748. This work was completed during Zhao’s visit to the Department of Mathematics at Oklahoma State University from 2018 to 2019 and he thanks the department for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiefeng Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wu, J. Oldroyd-B Model with High Weissenberg Number and Fractional Velocity Dissipation. J Geom Anal 33, 296 (2023). https://doi.org/10.1007/s12220-023-01361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01361-3

Keywords

Mathematics Subject Classification

Navigation