Skip to main content
Log in

A Note on the Complete Kähler–Einstein Metrics of Disk Bundles Over Compact Homogeneous Kähler Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article, we focus on the explicit description of the Kähler–Einstein metric on the disk bundle over some simply connected compact homogeneous Kähler manifolds. More precisely, we consider a strictly pseudoconvex domain in a Hermitian line bundle, which is the disk bundle of the \(\gamma \)-tensor power of the negative canonical bundle over any compact homogeneous Kähler manifold. We obtained a necessary and sufficient condition for the existence of the Kähler–Einstein metric on such disk bundle, which generalized a recent proposition by Ebenfelt, Xiao and Xu. As an application, we study the explicit solution of the Monge–Ampère equation on the disk bundles over the complex flag manifolds of classical type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar, R.M.: Pseudo-Riemannian metrics, Kähler–Einstein metrics on Grauert tubes and harmonic Riemannian manifolds. Q. J. Math. 51(1), 1–17 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseevskii, D.V., Perelomov, A.M.: Invariant Kähler–Einstein metrics on compact homogeneous spaces. Funct. Anal. Appl. 20(3), 171–182 (1986)

    Article  MATH  Google Scholar 

  3. Arvanitoyeorgos, A.: Geometry of flag manifolds. Int. J. Geom. Methods Modern Phys. 3(5–6), 957–974 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bando, S., Mabuchi, T.: Uniqueness of Einstein-Kähler metrics modulo connected group actions. Algebraic Geometry, Sendai 1985, Advanced Studies in Pure Mathematics 10, Kinokuniya, Tokyo, pp. 11–40 (1987)

  5. Berman, R.J., Berndtsson, B.: The volume of Kähler–Einstein Fano varieties and convex bodies. J. Reine Angew. Math. 723, 127–152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bland, J.: The Einstein–Kähler metric on \(\{|z|^{2}+|w|^{2p}<1\}\). Michigan Math. J. 33, 209–220 (1986)

    MathSciNet  MATH  Google Scholar 

  7. Borel, A., Remmert, R.: Übet kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann. 15, 429–439 (1961)

    MATH  Google Scholar 

  8. Calabi, E.: Métriques Kählériennes et fibrés holomorphes. Ann. Sci. École Norm. Sup. 12(2), 269–294 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calabi, E.: Isometric families of Kähler structures. In: Hsiang, W.Y. (ed.) The Chern Symposium 1979, pp. 23–39. Springer, Berlin (1980)

    Chapter  Google Scholar 

  10. Calabi, E.: Extremal Kähler metrics. In: Yau, S.T. (ed.) Seminar on Differential Geometry. Annals of Mathematics Studies, Princeton Univ. Press, Princeton (1982)

    Google Scholar 

  11. Catlin, D.: Bergman Kernels and a Theorem of Tian. In: Analysis and geometry in Several Complex ariables (Katata,1997), Trends Math., p. 123 Birkhuser Boston, Boston (1999)

  12. Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33(4), 507–544 (1980)

    Article  MATH  Google Scholar 

  13. Correa, E.M.: Homogeneous contact manifolds and resolutions of Calabi–Yau Cones. Commun. Math. Phys. 367(3), 1095–1151 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. DeTurck, D.M., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Sci. l’École Normale Supérieure 14(3), 249–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ebenfelt, P., Xiao, M., Xu, H.: Kähler–Einstein metrics and obstruction flatness of circle bundles. http://arxiv.org/abs/2208.13367v1

  16. Ebenfelt, P., Xiao, M., Xu, H.: Kähler–Einstein metrics and obstruction flatness II: unit sphere bundles. https://arxiv.org/pdf/2303.06408.pdf

  17. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library Edition Published, New York (1994)

    Book  MATH  Google Scholar 

  18. Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge–Ampère equation. J. Differ. Geom. 34, 561–570 (1991)

    Article  MATH  Google Scholar 

  19. Isaev, A.V.: Kähler–Einstein Metric on Reinhardt Domains. J. Geom. Anal. 5(2), 237–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kan, S.: Some complete invariant metrics in Grauert Tubes. Math. Res. Lett. 14(4), 633–648 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry II. Interscience Publishers, Geneva (1969)

    MATH  Google Scholar 

  22. Koiso, N., Sakane, Y.: Non-homogeneous Kähler–Einstein metrics on compact complex manifolds. Osaka J. Math. 25(4), 165–179 (1988)

    MATH  Google Scholar 

  23. Koszul, J.L.: Sur la forme hermitienne canonique des espace homogenes complexes. Can. J. Math. 7(4), 562–576 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, M.C.: Complete Kähler–Einstein metric on stein manifolds with negative curvature. Int. Math. Res. Notices 6, 4280–4289 (2022)

    Article  MATH  Google Scholar 

  25. Lempert, L., Szoke, R.: Global solutions of the homogeneous complex Monge–Ampère equations and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290, 689–712 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Loi, A., Mossa, R., Zuddas, F.: The log-term of the Bergman kernel of the disk bundle over a homogeneous Hodge manifold. Ann. Glob. Anal. Geom. 51, 35–51 (2017)

    Article  MATH  Google Scholar 

  27. Lu, Q.K., Yin, W.P.: Several Complex Variables in China on Its Research and Developments. Science Press, Beijing (2009)

    Google Scholar 

  28. Lu, Z., Tian, G.: The log term of Szegö Kernel. Duke Math. J. 125, 351–387 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Matsushima, Y.: Sur les espaces homogènes kählériens d’un groupe de Lie réductif. Nagoya Math. J. 11, 53–60 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  30. Popov, V.L.: Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles. Izvestiya Akademii Nauk SSSR Ser. Mat. Tom 38 (1974), No. 2 Math. USSR Izvestija vol. 8(2), pp. 301–327 (1974)

  31. Matsushima, Y.: Remarks on Kähler–Einstein manifolds. Nagoya Math. J. 46, 161–173 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mok, N., Yau, S.T.: Completeness of the Kähler–Einstein metric on bounded domains and characterization of domains of holomorphy by curvature conditions. The Mathematical Heritage of Henri Poincaré, Proceedings of Symposia in Pure Mathematics, vol. 39, pp. 41–60 (1983)

  33. Sakane, Y.: Examples of compact Einstein Kähler manifolds with positive Ricci tensor. Osaka J. Math. 576, 154–176 (1985)

    MathSciNet  Google Scholar 

  34. Stenzel, M.B.: Ricci-flat metrics on the complexification of a compact rank one symmetric space. Manuscr. Math. 80, 151–153 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. van Coevering, C.: Kähler–Einstein metrics on strictly pseudoconvex domains. Ann. Glob. Anal. Geom. 42, 287–315 (2012)

  36. Wang, A., Yin, W., Zhang, L., Zhang, W.: The Einstein–Kähler metric with explicit formula on non-homogeneous domains. Asian J. Math. 8, 039–050 (2004)

    Article  MathSciNet  Google Scholar 

  37. Wu, D., Yau, S.T.: Invariant metrics on negatively pinched complete Kähler manifolds. J. Am. Math. Soc. 33, 103–133 (2020)

    Article  MATH  Google Scholar 

  38. Zelditch, S.: Szegö Kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyou Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project was partially supported by NSF of China (Nos. 11871044, 11601422, 12071310).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Wang, A. & Zhang, L. A Note on the Complete Kähler–Einstein Metrics of Disk Bundles Over Compact Homogeneous Kähler Manifolds. J Geom Anal 33, 291 (2023). https://doi.org/10.1007/s12220-023-01355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01355-1

Keywords

Mathematics Subject Classification

Navigation