Skip to main content
Log in

Animal Shapes, Modal Analysis, and Visualization of Motion (I): Horse and Camel

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Eigenfunctions and eigenvalues of physical systems and engineering structures can reveal many of the system’s fundamental features and, therefore, become a basis for the study of inverse problems. In this series of papers, we take a reverse, direct-problem point of view; namely, given the shapes of animals, can we see the patterns of their motions or behaviors through their eigenmode analysis? This modal analysis, we believe, has never been done for living animals. Our modal analysis emphasizes dynamics, which is achieved by visualization through video animation by incorporating the time-harmonic dependence of the eigenmodes. Furthermore, we intend our modal analysis to be more realistic by encompassing the situation of the presence of a floor. Certain physical interpretations of the motion patterns from modal analysis are made. In addition, by visualization, one can see that symmetry plays an important role in motion patterns. One of our main conclusions is that shapes alone can usefully reflect or explain some animal’s behavior or motion patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78

Similar content being viewed by others

References

  1. Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73(4P2), 1–23 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gordon, C., Webb, D.L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Am. Math. Soc. 27(1), 134–138 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zelditch, S.: Spectral determination of analytic bi-axisymmetric plane domains. Geom. Funct. Anal. 10(3), 628–677 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Animals, see the website of Biology Online. https://www.biologyonline.com/dictionary/animal

  5. Thompson, D.W., Thompson, D.W.: On Growth and Form, vol. 2. Cambridge University Press, Cambridge (1942)

    MATH  Google Scholar 

  6. Allometry. https://en.wikipedia.org/wiki/Allometry/

  7. Vitalism. https://en.wikipedia.org/wiki/Vitalism/

  8. Turing, A.M.: The chemical basis of morphogenesis. Bull. Math. Biol. 52(1), 153–197 (1990)

    Article  Google Scholar 

  9. Wu, J., Qiu, Y.: Modelling of seated human body exposed to combined vertical, lateral and roll vibrations. J. Sound Vib. 485, 115509 (2020)

    Article  Google Scholar 

  10. Yue, Z., Mester, J.: A modal analysis of resonance during the whole-body vibration. Stud. Appl. Math. 112(3), 293–314 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. van der Weele, J.P., Banning, E.J.: Mode interaction in horses, tea, and other nonlinear oscillators: the universal role of symmetry. Am. J. Phys. 69(9), 953–965 (2001)

    Article  Google Scholar 

  12. Banning, E., Van der Weele, J.: Mode competition in a system of two parametrically driven pendulums: the Hamiltonian case. Physica A 220(3–4), 485–533 (1995)

    Article  Google Scholar 

  13. Banning, E., Van der Weele, J., Ross, J., Kettenis, M.: Mode competition in a system of two parametrically driven pendulums with nonlinear coupling. Physica A 245(1–2), 49–98 (1997)

    Article  MathSciNet  Google Scholar 

  14. Banning, E., Van der Weele, J., Ross, J., Kettenis, M., de Kleine, E.: Mode competition in a system of two parametrically driven pendulums; the dissipative case. Physica A 245(1–2), 11–48 (1997)

    Article  MathSciNet  Google Scholar 

  15. Banning, E., Van der Weele, J., Kettenis, M.: Mode competition in a system of two parametrically driven pendulums; the role of symmetry. Physica A 247(1–4), 281–311 (1997)

    Article  Google Scholar 

  16. Van der Weele, J., Banning, E.: Mode interaction in a cup of coffee and other nonlinear oscillators. Nonlinear Phenom. Complex Syst. 3(3), 268–283 (2000)

    MathSciNet  Google Scholar 

  17. Chen, G., Scully, M.M., Huang, J., Sergeev, A., Yang, J., Wei, C.-Q., Monday, P., Cohen, L., Cheng, X.-G., Liu, S.-Y., Wang, J., Zhou, S.-Q.: Fundamental biomechanical modes of motion of the human body as human vibration

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  19. LSTC, LS-DYNA Theory Manual. https://ftp.lstc.com/anonymous/outgoing/jday/manuals/DRAFT_Theory.pdf/

  20. Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le cas ou les efforts sont donnés à la surface, Annales de la Faculté des sciences de Toulouse. Mathématiques 10, 165–269 (1908)

    MATH  Google Scholar 

  21. Images of a thoroughbred. https://www.google.com/imgres?imghbreakurls=https%253A%252F%252Fwww.liveabout.com%252Fthmb%252FqntCirSxgk-xarPYt-rUJDyCk7Q%253D%252F1000x750%252Fsmart%252Ffilters%253Ano_upscale()%252Fsecretariat-hancock-56a4da855f9b58b7d0d98806.jpg &imgrefhbreakurls=https%253A%252F%252Fwww.liveabout

  22. CAD horse model. https://blendermarket.com/products/horse-base-mesh

  23. SolidWorks software package. https://my.solidworks.com/

  24. ANSYS Geometry. https://grabcad.com/library?sort=most_downloaded &tags=ansys

  25. Blender software (Home of the Blender project-Free and Open 3D artistic rendering and movie-making software platform). https://www.blender.org/

  26. 3D Models. https://creazilla.com/nodes/3060-camel-3d-model/

  27. LSTC, Contact Modeling in LS-DYNA. https://www.dynasupport.com/tutorial/ls-dyna-users-guide/contact-modeling-in-ls-dyna

  28. Dziri, R.: Optimal tubes for non-cylindrical Navier–Stokes flows with Navier boundary condition. Evol. Equ. Control Theory 12(3), 1014–1038 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ganghoffer, J.-F., Plotnikov, P.I., Sokolowski, J.: Nonconvex model of material growth: mathematical theory. Arch. Ration. Mech. Anal. 230, 839–910 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Plotnikov, P.I., Ganghoffer, J., Sokolowski, J.: Volumetric Material Growth: Mathematical Theory, Doklady Mathematics, vol. 94, pp. 498–501. Springer, Cham (2016)

    MATH  Google Scholar 

  31. Ganghoffer, J.-F., Plotnikov, P.I., Sokołowski, J.: Mathematical modeling of volumetric material growth in thermoelasticity. J. Elast. 117, 111–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moubachir, M., Zolesio, J.-P.: Moving Shape Analysis and Control: Applications to Fluid Structure Interactions. CRC Press, Boca Raton (2006)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jan Sokolowski for invaluable suggestions and constructive comments. Chunqiu Wei is supported by the Research Ability Improvement Program for Young Teachers of BUCEA (Grant No. X21031). Tiexin Guo is supported by the National Natural Science Foundation of China (Grant No. 11971483) and the Science and Technology Research Project of Chongqing Municipal Education Commission (Grant No. KJ1706154). Pengfei Yao is supported in part by the National Science Foundation of China, grant No. 12071463, and by the special fund for Science and Technology Innovation Teams of Shanxi Province, Grants # 202204051002015. Junmin Wang is supported in part by the National Natural Science Foundation of China No. 62073037 and 12131008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Chen: on Development Leave from Texas A &M University.

Appendix: Frequencies of vibrations of the horse and camel

Appendix: Frequencies of vibrations of the horse and camel

Table 2 The frequencies of modal analysis of, respectively, the horse and camel without floor or with floor. Note that the first 6 frequencies are actually zero (i.e., trivial). The rest 100 frequencies are nonzero. Therefore, we have included a total of 106 frequencies in the table

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Huang, J., Wei, C. et al. Animal Shapes, Modal Analysis, and Visualization of Motion (I): Horse and Camel. J Geom Anal 33, 328 (2023). https://doi.org/10.1007/s12220-023-01339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01339-1

Keywords

Mathematics Subject Classification

Navigation