Skip to main content
Log in

Isoperimetric Type Inequalities for Mappings Induced by Weighted Laplace Differential Operators

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to establish some isoperimetric type inequalities for mappings induced by the weighted Laplace differential operators. The obtained results of this paper provide improvements and extensions of the corresponding known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton, NJ (2009)

    MATH  Google Scholar 

  2. Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borichev, A., Hedenmalm, H.: Weighted integrability of polyharmonic functions. Adv. Math. 264, 464–505 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carleman, T.: Zur theorie der minimalflächen. Math. Z. 9, 154–160 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Li, P., Sahoo, S., Wang, X.: On the Lipschitz continuity of certain quasiregular mappings between smooth Jordan domains. Isr. J. Math. 220, 453–478 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S., Ponnusamy, S., Wang, X.: Remarks on ‘Norm estimates of the partial derivatives for harmonic mappings and harmonic quasiregular mappings’. J. Geom. Anal. 31, 11051–11060 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, S., Ponnusamy, S., Rasila, A.: On characterizations of Bloch-type, Hardy-type, and Lipschitz-type spaces. Math. Z. 279, 163–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duren, P.: Univalent Functions. Springer-Verlag, New York (1983)

    MATH  Google Scholar 

  9. Duren, P.: Theory of \(H^p\) Spaces. Academic Press, New York-London (1970)

    MATH  Google Scholar 

  10. Duren, P.: Harmonic Mappings in the Plane. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Finn, R., Serrin, J.: On the Hölder continuity of quasi-conformal and elliptic mappings. Trans. Am. Math. Soc. 89, 1–15 (1958)

    MATH  Google Scholar 

  12. Gehring, F.: The \(L^{p}\)-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hang, F., Wang, X., Yan, X.: Sharp integral inequalities for harmonic functions. Commun. Pure Appl. Math. 61, 54–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer-Verlag, New York (2000)

    Book  MATH  Google Scholar 

  15. Iwaniec, T.: \(L^{p}\)-theory of Quasiregular Mappings. Springer, Berlin-Heidelberg-New York (1992)

    MATH  Google Scholar 

  16. Kalaj, D.: On Riesz type inequalities for harmonic mappings on the unit disk. Trans. Am. Math. Soc. 372, 4031–4051 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kalaj, D., Mateljević, M.: \((K, K^{\prime })\)-quasiconformal harmonic mappings. Potential Anal. 36, 117–135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kalaj, D., Meštrović, R.: An isoperimetric type inequality for harmonic functions. J. Math. Anal. Appl. 373, 439–448 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khalfallah, A., Mateljević, M., Mhamdi, M.: Some properties of mappings admitting general Poisson representations. Mediterr. J. Math. 18, 19 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuang, J.: Applied Inequalities, 4th edn. Shandong Science and Technology Press, Shandong (2010)

    Google Scholar 

  21. Liu, C., Peng, L.: Boundary regularity in the Dirichlet problem for the invariant Laplacians \(\Delta _{\gamma }\) on the unit real ball. Proc. Am. Math. Soc. 132, 3259–3268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, C., Peng, L.: Generalized Helgason-Fourier transforms associated to variants of the Laplace-Beltrami operators on the unit ball in \(\mathbb{R}^{n}\). Indiana Univ. Math. J. 58, 1457–1491 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, C., Perälä, A., Si, J.: Weighted integrability of polyharmonic functions in the higher-dimensional case. Anal. PDE. 14, 2047–2068 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Long, B., Wang, Q.: Some coefficient estimates on real kernel-harmonic mappings. Proc. Am. Math. Soc. 150, 1529–1540 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Olofsson, A.: On a weighted harmonic Green function and a theorem of Littlewood. Bull. Sci. Math. 158, 63 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Olofsson, A.: Differential operators for a scale of Poisson type kernels in the unit disc. J. Anal. Math. 123, 227–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Olofsson, A., Wittsten, J.: Poisson integrals for standard weighted Laplacians in the unit disc. J. Math. Soc. Jpn. 65, 447–486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pavlović, M.: Introduction to Function Spaces on the Disk. Matematički Institut SANU, Belgrade (2004)

    MATH  Google Scholar 

  29. Rainville, E.: Special Functions. The Macmillan Co., New York (1960)

    MATH  Google Scholar 

  30. Rickman, S.: Quasiregular Mappings. Springer-Verlag, Berlin (1993)

    Book  MATH  Google Scholar 

  31. Rudin, W.: Real and Complex Analysis. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  32. Stein, E., Shakarchi, R.: Real Analysis. Measure Theory, Integration, and Hilbert Spaces. Princeton Lectures in Analysis, Princeton University Press, Princeton, NJ (2005)

    Book  MATH  Google Scholar 

  33. Strebel, K.: Quadratic Differentials. Springer-Verlag, Berlin (1984)

    Book  MATH  Google Scholar 

  34. Zorich, V.: Mathematical Analysis II. Springer-Verlag, Berlin (2004)

    MATH  Google Scholar 

  35. Zhu, J.: Norm estimates of the partial derivatives for harmonic mappings and harmonic quasiregular mappings. J. Geom. Anal. 31, 5505–5525 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Springer-Verlag, New York (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank the referee for many valuable suggestions. We also would like to thank professor David Kalaj and Miodrag Mateljević for their valuable comments. The first author (Jiaolong Chen) is partially supported by NNSF of China (No. 12071121), NSF of Hunan Province (No. 2022JJ30365), SRF of Hunan Provincial Education Department (No. 22B0034) and the construct program of the key discipline in Hunan Province. The second author (Shaolin Chen) is partially supported by NNSF of China (No. 12071116), Hunan Provincial Natural Science Foundation of China (No. 2022JJ10001), and the Key Projects of Hunan Provincial Department of Education (No. 21A0429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, S., Huang, M. et al. Isoperimetric Type Inequalities for Mappings Induced by Weighted Laplace Differential Operators. J Geom Anal 33, 216 (2023). https://doi.org/10.1007/s12220-023-01296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01296-9

Keywords

Mathematics Subject Classification

Navigation