Skip to main content
Log in

Spherical Cones: Classification and a Volume Minimization Principle

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Using a variational approach, we establish the equivalence between a weighted volume minimization principle and the existence of a conical Calabi–Yau structure on horospherical cones with mild singularities. This allows us to do explicit computations on the examples arising from rank-two symmetric spaces, showing the existence of many irregular horospherical cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altmann, K., Hausen, J.: Polyhedral divisors and algebraic torus actions. Math. Ann. 334(3), 557–607 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37(1), 1–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, R. J.: Conical Calabi–Yau metrics on toric affine varieties and convex cones. http://arxiv.org/abs/2005.07053 (2020)

  4. Berman, R.J., Berndtsson, B.: Real Monge–Ampère equations and Kähler–Ricci solitons on toric log Fano varieties. Ann. Fac. Sci. Toulouse Math. (6) 22(4), 649–711 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Théorie et applications. [Theory and applications]. Masson, Paris (1983)

  6. Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58(2), 397–424 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brion, M.: Sur la géométrie des variétés sphériques. Comment. Math. Helv. 66(2), 237–262 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brion, M.: Variétés sphériques. Notes de cours (1997)

  9. Brion, M., Pauer, F.: Valuations des espaces homogènes sphériques. Comment. Math. Helv. 62(2), 265–285 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brion, M., Luna, D., Vust, T.: Espaces homogènes sphériques. Invent. Math. 84(3), 617–632 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L.A.: A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity. Ann. of Math. (2) 131(1), 129–134 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L.A.: Interior \(W^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. of Math. (2) 131(1), 135–150 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Am. Math. Soc. 28(1), 183–197 (2015)

    Article  MATH  Google Scholar 

  14. Chen, X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. II: Limits with cone angle less than \(2\pi \). J. Am. Math. Soc. 28(1), 199–234 (2015)

    Article  MATH  Google Scholar 

  15. Chen, X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Am. Math. Soc. 28(1), 235–278 (2015)

    Article  MATH  Google Scholar 

  16. Collins, T.C., Székelyhidi, G.: K-semistability for irregular Sasakian manifolds. J. Diff. Geom. 109(1), 81–109 (2018)

  17. Collins, T.C., Székelyhidi, G.: Sasaki–Einstein metrics and K-stability. Geom. Topol. 23(3), 1339–1413 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Concini, C., Procesi, C.: Complete symmetric varieties. In: Invariant Theory (Montecatini, 1982), Volume 996 of Lecture Notes in Math. Springer, Berlin, pp. 1–44 (1983)

  19. Delcroix, T.: K-stability of Fano spherical varieties. Ann. Sci. Éc. Norm. Supér. (4) 53(3), 615–662 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Delcroix, T.: Kähler geometry of horosymmetric varieties, and application to Mabuchi’s K-energy functional. J. Reine Angew. Math. 763, 129–199 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Diff. Geom. 62(2), 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler–Einstein metrics. J. Am. Math. Soc. 22(3), 607–639 (2009)

    Article  MATH  Google Scholar 

  24. Figalli, A.: The Monge–Ampère Equation and Its Applications. Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich (2017)

    Book  MATH  Google Scholar 

  25. Gauntlett, J.P., Martelli, D., Sparks, J., Waldram, D.: Sasaki–Einstein metrics on \(S^2\times S^3\). Adv. Theor. Math. Phys. 8(4), 711–734 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Knop, F.: The Luna-Vust theory of spherical embeddings. In: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989). Manoj Prakashan, Madras, pp. 225–249 (1991)

  27. Knop, F.: Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind. Math. Ann. 295(2), 333–363 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Knop, F.: The asymptotic behavior of invariant collective motion. Invent. Math. 116(1–3), 309–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Knop, F., Kraft, H., Luna, D., Vust, T.: Local Properties of Algebraic Group Actions. Birkhäuser, Basel (1989)

    Book  MATH  Google Scholar 

  30. Kollar, J.: Seifert \({G}_m\)-bundles. http://arxiv.org/0404386 (2004)

  31. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nauk SSSR Ser. Mat. 47(1), 75–108 (1983)

    MathSciNet  Google Scholar 

  32. Li, C.: K-semistability is equivariant volume minimization. Duke Math. J. 166(16), 3147–3218 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, C.: Notes on weighted Kähler-Ricci solitons and applications to Ricci-flat Kähler cone metrics. In: Xiamen International Conference on Geometric Analysis (2021)

  34. Li, C., Chenyang, X.: Stability of valuations: higher rational rank. Peking Math. J. 1(1), 1–79 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, C., Han, J.: Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci solitons. http://arxiv.org/abs/2006.00903 (2020)

  36. Li, C., Wang, X., Chenyang, X.: Algebraicity of the metric tangent cones and equivariant K-stability. J. Am. Math. Soc. 34(4), 1175–1214 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Losev, I.V.: Proof of the Knop conjecture. Ann. Inst. Fourier (Grenoble) 59(3), 1105–1134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Martelli, D., Sparks, J., Yau, S.-T.: Sasaki–Einstein manifolds and volume minimisation. Commun. Math. Phys. 280(3), 611–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nghiem, T.-T.: On the regularity of conical Calabi–Yau potentials. http://arxiv.org/abs/2210.09189 (2022)

  40. Pasquier, B.: Variétés horosphériques de Fano. Bull. Soc. Math. France 136(2), 195–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pasquier, B.: A survey on the singularities of spherical varieties. EMS Surv. Math. Sci. 4(1), 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rosenlicht, M.: Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura Appl. 4(61), 97–120 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ. 14, 1–28 (1974)

    MathSciNet  MATH  Google Scholar 

  44. Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Timashev, D.A.: Homogeneous Spaces and Equivariant Embeddings. Encyclopaedia of Mathematical Sciences, vol. 138. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  46. Vust, T.: Opération de groupes réductifs dans un type de cônes presque homogènes. Bull. Soc. Math. France 102, 317–333 (1974)

  47. Vust, T.: Sur la théorie des invariants des groupes classiques. Ann. Inst. Fourier 26(1), 1–31 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vust, T.: Plongements d’espaces symétriques algébriques: une classification. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17(2), 165–195 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is part of a thesis prepared under the supervision of Thibaut Delcroix and Marc Herzlich, partially supported by ANR-21-CE40-0011 JCJC project MARGE. I would like to thank Thibaut Delcroix for many illuminating discussions and remarks.

Funding

Funding was provided by Université de Montpellier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran-Trung Nghiem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nghiem, TT. Spherical Cones: Classification and a Volume Minimization Principle. J Geom Anal 33, 221 (2023). https://doi.org/10.1007/s12220-023-01286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01286-x

Keywords

Mathematics Subject Classification

Navigation