Skip to main content
Log in

Ground States for Logarithmic Schrödinger Equations on Locally Finite Graphs

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the following logarithmic Schrödinger equation:

$$\begin{aligned} -\Delta u+a(x)u=u\log u^2\ \ \ \ \text{ in } V, \end{aligned}$$

where \(\Delta \) is the graph Laplacian, \(G=(V,E)\) is a connected locally finite graph, the potential \(a: V\rightarrow {\mathbb {R}}\) is bounded from below and may change sign. We first establish two Sobolev compact embedding theorems in the case when different assumptions are imposed on a(x). This leads to two kinds of associated energy functionals, one of which is not well defined under the logarithmic nonlinearity, while the other is \(C^1\). The existence of ground state solutions are then obtained by using the Nehari manifold method and the mountain pass theorem respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Bianchi, D., Setti, A.G., Wojciechowski, R.K.: The generalized porous medium equation on graphs: existence and uniqueness of solutions with \(l^1\) data. Calc. Var. Partial Differ. Equ. 61(5), 42 (2022)

    MATH  Google Scholar 

  2. Huang, X.P.: On uniqueness class for a heat equation on graphs. J. Math. Anal. Appl. 393, 377–388 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Lin, Y., Wu, Y.T.: The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc. Var. Partial Differ. Equ. 56(4), 22 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Huang, A., Lin, Y., Yau, S.-T.: Existence of solutions to mean field equations on graphs. Comm. Math. Phys. 377(1), 613–621 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Hou, S.B., Sun, J.M.: Existence of solutions to Chern–Simons–Higgs equations on graphs. Calc. Var. Partial Differ. Equ. 61(4), 13 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Ge, H.B., Jiang, W.F.: Kazdan–Warner equation on infinite graphs. J. Korean Math. Soc. 55(5), 1091–1101 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Grigor’yan, A., Lin, Y., Yang, Y.Y.: Kazdan–Warner equation on graph. Calc. Var. Partial Differ. Equ. 55(4), 13 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Ge, H.B.: A \(p\)-th Yamabe equation on graph. Proc. Amer. Math. Soc. 146(5), 2219–2224 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Ge, H.B., Jiang, W.F.: Yamabe equations on infinite graphs. J. Math. Anal. Appl. 460(2), 885–890 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Grigor’yan, A., Lin, Y., Yang, Y.Y.: Yamabe type equations on graphs. J. Differ. Equ. 261(9), 4924–4943 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Grigor’yan, A., Lin, Y., Yang, Y.Y.: Existence of positive solutions for nonlinear equations on graphs. Sci. China Math. 60(7), 1311–1324 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Zhang, N., Zhao, L.: Convergence of ground state solutions for nonlinear Schrödinger equations on graphs. Sci. China Math. 61(8), 1481–1494 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Han, X.L., Shao, M.Q., Zhao, L.: Existence and convergence of solutions for nonlinear biharmonic equations on graphs. J. Differ. Equ. 268, 3936–3961 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Lin, Y., Yang, Y.: Calculus of variations on locally finite graphs. Rev. Mat. Complut. 35, 791–813 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Xu, J.Y., Zhao, L.: Existence and convergence of solutions for nonlinear elliptic systems on graphs. Commun. Math. Stat. (2023). https://doi.org/10.1007/s40304-022-00318-2

  16. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140(3), 285–300 (1997)

    MATH  Google Scholar 

  17. Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems on \({{\mathbb{R} } }^n\). Progress in Mathematics. Birkhäuser Verlag, Basel (2006)

    MATH  Google Scholar 

  18. Ambrosetti, A., Malchiodi, A., Felli, V.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7(1), 117–144 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3(4), 549–569 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R} }^N\). Comm. Partial Differ. Equ. 20(9–10), 1725–1741 (1995)

    MATH  Google Scholar 

  21. Cerami, G., Passaseo, D., Solimini, S.: Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients. Comm. Pure Appl. Math. 66(3), 372–413 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Li, Y., Wang, Z.Q., Zeng, J.: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. Poincare Anal. Non Lineaire. 23(6), 829–837 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Willem, M.: Minimax Theorems. Birkhäuser Verlag, Boston (1996)

    MATH  Google Scholar 

  25. Carles, R., Gallagher, I.: Universal dynamics for the defocusing logarithmic Schrödinger equation. Duke Math. J. 167(9), 1761–1801 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics Vol. 10 (New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society) (2003)

  27. Zloshchastiev, K.G.: Logarithmic nonlinearity in the theories of quantum gravity: origin of time and observational consequences. Gravit. Cosmol. 16(4), 288–297 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. 7(10), 1127–1140 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. 54(1), 585–597 (2015)

    MATH  Google Scholar 

  30. d’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16(2), 15 (2014)

    MATH  Google Scholar 

  31. d’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38(18), 5207–5216 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437(1), 241–254 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Tanaka, K., Zhang, C.X.: Multi-bump solutions for logarithmic Schrödinger equations. Calc. Var. Partial Differ. Equ. 56(2), 33–35 (2017)

    MATH  Google Scholar 

  34. Guerrero, P., López, J.L., Nieto, J.: Global \(H^1\) solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal. Real World Appl. 11(1), 79–87 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Wang, Z.-Q., Zhang, C.X.: Convergence from power-law to logarithmic-law in nonlinear scalar field equations. Arch. Ration. Mech. Anal. 231(1), 45–61 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Shuai, W.: Multiple solutions for logarithmic Schrödinger equations. Nonlinearity 32(6), 2201–2225 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Alves, C.O., Ji, C.: Multiple positive solutions for a Schrödinger logarithmic equation. Discrete Contin. Dyn. Syst. 40, 2671–2685 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Alves, C.O., Ji, C.: Existence of a positive solution for a logarithmic Schrödinger equation with saddle-like potential. Manuscripta Math. 164, 555–575 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Alves, C. O., Ji, C.: Multi-peak positive solutions for a logarithmic Schrödinger equation via variational methods, Israel J. Math. to appear (2023)

  40. Alves, C.O., Ji, C.: Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well. Sci. China Math. 65(8), 1577–1598 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Alves, C.O., Ji, C.: Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method. Calc. Var. Partial Differ. Equ. 59(1), 21–27 (2020)

    MATH  Google Scholar 

  42. Alves, C.O., Moussaoui, A., Tavares, L.: An elliptic system with logarithmic nonlinearity. Adv. Nonlinear Anal. 8(1), 928–945 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Carles, R.: Logarithmic Schrödinger equation and isothermal fluids. EMS Surv. Math. Sci. 9(1), 99–134 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    MATH  Google Scholar 

  45. Ikoma, N., Tanaka, K., Wang, Z.-Q., Zhang, C.X.: Semi-classical states for logarithmic Schrödinger equations. Nonlinearity 34(4), 1900–1942 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Shuai, W.: Existence and multiplicity of solutions for logarithmic Schrödinger equations with potential. J. Math. Phys. 62(5), 22 (2021)

    MATH  Google Scholar 

  47. Zhang, C.X., Zhang, X.: Bound states for logarithmic Schrödinger equations with potentials unbounded below. Calc. Var. Partial Differ. Equ. 59(1), 31 (2020)

    MATH  Google Scholar 

  48. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165(4), 295–316 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. II. Calc. Var. Partial Differ. Equ. 18(2), 207–219 (2003)

    MATH  Google Scholar 

  50. Sirakov, B.: Standing wave solutions of the nonlinear Schrödinger equation in \({{\mathbb{R} } }^n\). Ann. Mat. Pura Appl. 181(1), 73–83 (2002)

    MathSciNet  MATH  Google Scholar 

  51. Ding, Y., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29(3), 397–419 (2007)

    MATH  Google Scholar 

  52. Lin, Y., Liu, S., Song, H.Y.: Log-Sobolev inequalities on graphs with positive curvature. Mat. Fiz. Komp’yut. Model. 3, 99–110 (2017)

    MathSciNet  Google Scholar 

  53. Schechter, M.: A variation of the mountain pass lemma and applications. J. London Math. Soc. 44(3), 491–502 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Xiaojun Chang is supported by the National Natural Science Foundation of China (No.11971095), while Duokui Yan is supported by the National Natural Science Foundation of China (No.11871086). This work was done when Xiaojun Chang visited the Laboratoire de Mathématiques, Université de Bourgogne Franche-Comté during the period from 2021 to 2022 under the support of China Scholarship Council (202006625034), and he would like to thank the Laboratoire for their support and kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we present two examples to show that there exists \(u\in H^1(V)\) but \(\int _{V}u^2\log u^2dx=-\infty \).

Example 1

We consider a connected locally finite graph \(G=(V,E)\) such that \(V:={\mathbb {N}} \cup \{0\}\), where \({\mathbb {N}}\) denotes the set of natural numbers. Fixed \(x_0=0\in V\). Let

$$\begin{aligned} u(x)= {\left\{ \begin{array}{ll} \left( \vert x\vert \log \vert x\vert \right) ^{-1}, ~ &{}\vert x\vert \ge 3,\\ 0, ~ &{}\vert x\vert \le 2, \end{array}\right. } \end{aligned}$$

where \(\vert x\vert :=d(x,x_0)\), the measure

$$\begin{aligned} \mu (x)= {\left\{ \begin{array}{ll} x, ~ &{}x\ge 1,\\ 1, ~ &{}x=0. \end{array}\right. } \end{aligned}$$

For simplicity, we assume that \(\omega _{xy}=1\).

Let’s recall the following fact

$$\begin{aligned} \sum _{n=2}^{\infty }\frac{1}{n(\log n)^p} {\left\{ \begin{array}{ll} <\infty ,~~~&{} \text{ if } p>1,\\ =\infty ,~~~&{} \text{ if } 0\le p\le 1. \end{array}\right. }\end{aligned}$$

First of all, we prove that \(u\in H^1(V)\). By the definition of u and \(\mu \), we have

$$\begin{aligned} \int _V u^2d\mu =\sum _{x\in {\mathbb {N}}}\mu (x)u^2(x)=\sum _{x\ge 3}\frac{x}{x^2(\log x)^2}=\sum _{x\ge 3}\frac{1}{x(\log x)^2}<\infty \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\int _V\vert \nabla u\vert ^2d\mu =\frac{1}{2}\sum _{x\in {\mathbb {N}}}\sum _{y\sim x}\left( u(y)-u(x)\right) ^2\\&\quad =\frac{1}{2}\left( u(3)-u(2)\right) ^2+\frac{1}{2}\left( u(2)-u(3)\right) ^2+\frac{1}{2}\left( u(4)-u(3)\right) ^2\\&\qquad +\frac{1}{2}\sum _{x\ge 4}\sum _{y\sim x}\left( u(y)-u(x)\right) ^2\\&\quad =\frac{1}{3^2(\log 3)^2}+\sum _{x\ge 3}\left( \frac{1}{(x+1)\log (x+1)}-\frac{1}{x\log x}\right) ^2\\&\quad \le \frac{1}{3^2(\log 3)^2}+\sum _{x\ge 3}\left( \frac{1}{(x+1)^2\left( \log (x+1)\right) ^2}+\frac{1}{x^2(\log x)^2}\right) \\&\quad \le \frac{1}{3^2(\log 3)^2}+\sum _{x\ge 3}\frac{2}{x^2(\log x)^2}\\&\quad <\infty . \end{aligned}\end{aligned}$$

Next, we prove that \(\int _Vu^2\log u^2d\mu =-\infty \). Note that

$$\begin{aligned} u^2(x)\log u^2(x)=-\left( \frac{2}{x^2\log x}+\frac{2\log (\log x)}{x^2(\log x)^2}\right) , \end{aligned}$$

we have

$$\begin{aligned} \begin{aligned}&\int _Vu^2\log u^2d\mu =\sum _{x\in {\mathbb {N}}}\mu (x)u^2(x)\log u^2(x)\\&\quad =\sum _{x\ge 3}x\cdot u^2(x)\log u^2(x)\\&\quad =-\left( \sum _{x\ge 3}\frac{2}{x\log x}+\sum _{x\ge 3}\frac{2\log (\log x)}{x(\log x)^2}\right) \\&\quad =-(I+II). \end{aligned}\end{aligned}$$

Since \(II>0\), it suffices to prove the following fact

$$\begin{aligned} \sum _{x\ge 3}\frac{2}{x\log x}=\infty . \end{aligned}$$

But this is obvious, and thus we completes the proof.

Example 2

Assume that \(G=(V,E)\) is a connected locally finite graph, and there exist some constants \(\mu _{\min },\ \mu _{\max }>0\) such that \(0<\mu _{\min }\le \mu (x)\le \mu _{\max }\) for all \(x\in V\).

Fixed \(x_0\in V\). Let

$$\begin{aligned} u(x)= {\left\{ \begin{array}{ll} \left( \vert x\vert ^{\frac{1}{2}}\log \vert x\vert \right) ^{-1}, ~ &{}\vert x\vert \ge 3,\\ 0, ~ &{}\vert x\vert \le 2, \end{array}\right. } \end{aligned}$$

where \(\vert x\vert :=d(x,x_0)\). Then \(u(x)\in H^1(V)\) and \(\int _Vu^2\log u^2d\mu =-\infty \). In fact, from the definition of u and \(\mu \), we have

$$\begin{aligned} \int _V u^2d\mu =\sum _{x\in V}\mu (x)u^2(x)=\sum _{\vert x\vert \ge 3}\frac{\mu (x)}{\vert x\vert \left( \log \vert x\vert \right) ^2}\le \mu _{\max }\sum _{\vert x\vert \ge 3}\frac{1}{\vert x\vert \left( \log \vert x\vert \right) ^2}<\infty \end{aligned}$$

and

$$\begin{aligned}\begin{aligned}&\int _V\vert \nabla u\vert ^2d\mu \\&\quad =\frac{1}{2}\sum _{x\in V}\sum _{y\sim x}\omega _{xy}\left( u(y)-u(x)\right) ^2\\&\quad =\frac{1}{2}\sum _{\vert x\vert =2}\sum _{\begin{array}{c} y\sim x \\ \vert y\vert =3 \end{array}}\frac{\omega _{xy}}{3(\log 3)^2}+\frac{1}{2}\sum _{\vert x\vert =3}\sum _{\begin{array}{c} y\sim x \\ \vert y\vert =2 \end{array}}\frac{\omega _{xy}}{3(\log 3)^2}\\&\qquad +\frac{1}{2}\sum _{\vert x\vert =3}\sum _{\begin{array}{c} y\sim x \\ \vert y\vert =4 \end{array}}\omega _{xy}\left( \frac{1}{\sqrt{4}\log 4}-\frac{1}{\sqrt{3}\log 3}\right) ^2+\frac{1}{2}\sum _{\vert x\vert \ge 4}\sum _{y\sim x}\omega _{xy}\left( u(y)-u(x)\right) ^2\\&\quad =\sum _{\vert x\vert =3}\sum _{\begin{array}{c} y\sim x \\ \vert y\vert =2 \end{array}}\frac{\omega _{xy}}{3(\log 3)^2}+\sum _{\vert x\vert \ge 3}\sum _{\begin{array}{c} y\sim x \\ \vert y\vert =\vert x\vert +1 \end{array}}\omega _{xy}\left( \frac{1}{\left( \vert x\vert +1\right) ^{\frac{1}{2}}\log \left( \vert x\vert +1\right) }-\frac{1}{\vert x\vert ^{\frac{1}{2}}\log \vert x\vert }\right) ^2\\&\quad \le \sum _{\vert x\vert =3}\sum _{\begin{array}{c} y\sim x \\ \vert y\vert =2 \end{array}}\frac{\omega _{xy}}{3(\log 3)^2}+\omega _{\max }\sum _{\vert x\vert \ge 3}\sum _{\begin{array}{c} y\sim x \\ \vert y\vert =\vert x\vert +1 \end{array}}\left( \frac{1}{\left( \vert x\vert +1\right) \left( \log \left( \vert x\vert +1\right) \right) ^2}+\frac{1}{\vert x\vert \left( \log \vert x\vert \right) ^2}\right) \\&\quad \le \sum _{\vert x\vert =3}\sum _{\begin{array}{c} y\sim x \\ \vert y\vert =2 \end{array}}\frac{\omega _{xy}}{3(\log 3)^2}+\omega _{\max }\sum _{\vert x\vert \ge 3}\sum _{\begin{array}{c} y\sim x \\ \vert y\vert =\vert x\vert +1 \end{array}}\frac{2}{\vert x\vert \left( \log \vert x\vert \right) ^2}\\&\quad <\infty . \end{aligned}\end{aligned}$$

In what follows, we prove that \(\int _Vu^2\log u^2d\mu =-\infty \). By direct calculations, we have

$$\begin{aligned}\begin{aligned} \int _Vu^2\log u^2d\mu&=\sum _{x\in V}\mu (x)u^2(x)\log u^2(x)\\&=\sum _{\vert x\vert \ge 3}\mu (x)u^2(x)\log u^2(x)\\&=-\left( \sum _{\vert x\vert \ge 3}\frac{\mu (x)}{\vert x\vert \log \vert x\vert }+\sum _{\vert x\vert \ge 3}\frac{2\mu (x)\log \left( \log \vert x\vert \right) }{\vert x\vert \left( \log \vert x\vert \right) ^2}\right) \\&=-\infty . \end{aligned}\end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., Wang, R. & Yan, D. Ground States for Logarithmic Schrödinger Equations on Locally Finite Graphs. J Geom Anal 33, 211 (2023). https://doi.org/10.1007/s12220-023-01267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01267-0

Keywords

Mathematics Subject Classification

Navigation