Skip to main content
Log in

Inverse Problem for a Structural Acoustic System with Variable Coefficients

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider stability in an inverse problem of determining the material coefficient matrix for a coupled system that describes acoustic interactions, by the Riemannian geometrical approach. The stability is proved by the Carleman estimates and observability inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avalos, G.: The exponential stability of a coupled hyperbolic/parabolic system arising in structural acoustics. Abstr. Appl. Anal. 1(2), 203–217 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avalos, G., Lasiecka, I.: The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system. Semigroup Forum 57(2), 278–292 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avalos, G., Lasiecka, I.: Exact controllability of structural acoustic interactions. J. Math. Pures Appl. 82, 1047–1073 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avalos, G., Lasiecka, I., Rebarber, R.: Well-posedness of a structural acoustics control model with point observation of the pressure. J. Differ. Equ. 173(1), 40–78 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baudouin, L., Puel, J.P.: Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18, 1537–1554 (2002)

    Article  MATH  Google Scholar 

  6. Beale, J.T.: Spectral properties of an acoustic boundary condition. Indiana Univ. Math. J. 25, 895–917 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beale, J.T.: Acoustic scattering from locally reacting surfaces. Indiana Univ. Math. J. 26, 199–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beilina, L., Cristofol, M., Li, S., Yamamoto, M.: Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations. Inverse Probl. 34, 015001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellassoued, M., Jellali, D., Yamamoto, M.: Lipschitz stability in an inverse problem for a hyperbolic equation with a finite set of boundary data. Appl. Anal. 87(10), 1105–1119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellassoued, M., Yamamoto, M.: Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases. Appl. Anal. 91(1), 35–67 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bellassoued, M., Yamamoto, M.: Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems. Springer, Tokyo (2017)

    Book  MATH  Google Scholar 

  12. Bukhgeim, A., Klibanov, M.: Global uniqueness of a class of multidimensional inverse problem. Sov. Math.-Dokl. 24, 244–247 (1981)

    Google Scholar 

  13. Fu, S.R., Yao, P.F.: Stability in inverse problem of an elastic plate with a curved middle surface (preprint, 2022)

  14. Gao, P.: Global Carleman estimate for the plate equation and applications to inverse problems. Electron. J. Differ. Equ. 2016, 1–13 (2016)

    MathSciNet  Google Scholar 

  15. Imanuvilov, O., Yamamoto, M.: Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Probl. 17, 717–728 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Imanuvilov, O., Yamamoto, M.: Global uniqueness and stability in determining coefficients of wave equations. Commun. Partial Differ. Equ. 26, 1409–1425 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurylev, Y., Lassas, M., Uhlmann, G.: Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations. Invent. Math. 212(3), 781–857 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lasiecka, I., Triggiani, R.: Exact controllability of the wave equation with Neumann boundary control. Appl. Math. Optim. 19(1), 243–290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control with no geometrical conditions. Appl. Math. Optim. 25, 189–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative wave equations with unobserved Neumann B.C.: global uniqueness and observability in one shot. Contemp. Math. 268, 227–325 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lassas, M., Uhlmann, G., Wang, Y.: Inverse problems for semilinear wave equations on Lorentzian manifolds. Commun. Math. Phys. 360, 555–609 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions, J.L., Magenes, E.: Non-homogenous Boundary Value Problems and Applications. Springer, New York (1972)

    Book  MATH  Google Scholar 

  23. Liu, S.: Inverse problem for a structural acoustic interaction. Nonlinear Anal. Theory Methods Appl. 74(7), 2647–2662 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, S., Triggiani, R.: Global uniqueness and stability in determining the damping and potential coefficients of an inverse hyperbolic problem. Nonlinear Anal. Real World Appl. 12(3), 1562–1590 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Bin-Mohsin, B., Hajaiej, H., Yao, P.F., Chen, G.: Exact controllability of structural acoustic interactions with variable coefficients. SIAM J. Control Optim. 54(4), 2132–2153 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Paolo, A.: Carleman estimates for the Euler–Bernoulli plate operator. Electron. J. Differ. Equ. 2000(53), 316–332 (2000)

    MathSciNet  Google Scholar 

  27. Triggiani, R.: Exact boundary controllability of \(L^2(\Omega )\times H^{-1}(\Omega )\) of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems. Appl. Math. Optim. 18, 241–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Triggiani, R., Yao, P.F.: Carleman estimates with no lower-order terms for general Riemann wave equations: global uniqueness and observability in one shot. Appl. Math. Optim. 46(2–3), 331–375 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Triggiani, R., Zhang, Z.: Global uniqueness and stability in determining the electric potential coefficient of an inverse problem for Schrödinger equations on Riemannian manifolds. J. Inverse ILL Posed Probl. 23, 587–609 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Y.H.: Global uniqueness and stability for an inverse plate problem. J. Optim. Theory Appl. 132(1), 161–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yamamoto, M., Zou, J.: Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inverse Probl. 17, 1181–1202 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yamamoto, M.: Carleman estimates for parabolic equations and applications. Inverse Probl. 25, 123013 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, F., Yao, P.F., Chen, G.: Boundary controllability of structural acoustic systems with variable coefficients and curved walls. Math. Control Signals Syst. 30, 5 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yao, P.F.: Modeling and Control in Vibrational and Structural Dynamics. A Differential Geometric Approach. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  35. Yuan, G., Yamamoto, M.: Lipschitz stability in inverse problems for a Kirchhoff plate equation. Asymptot. Anal. 53(1), 29–60 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by National Natural Science Foundation (NNSF) of China under Grant No. 12071463. The authors would also like to thank the anonymous referees for many useful suggestions that lead to a better presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Fei Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, SR., Yao, PF. Inverse Problem for a Structural Acoustic System with Variable Coefficients. J Geom Anal 33, 139 (2023). https://doi.org/10.1007/s12220-023-01194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01194-0

Keywords

Mathematics Subject Classification

Navigation