Skip to main content

Advertisement

Log in

The \(L^2\)-Boundedness of the Variational Calderón–Zygmund Operators

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we verify the \(L^2\)-boundedness for the jump functions and variations of Calderón–Zygmund singular integral operators with the underlying kernels satisfying

$$\begin{aligned} \int _{\varepsilon \le |x-y|\le N} K(x,y)\mathrm{{d}}y=\int _{\varepsilon \le |x-y|\le N}K(x,y)\mathrm{{d}}x=0\; \forall 0<\varepsilon \le N<\infty , \end{aligned}$$

in addition to some proper size and smooth conditions. This result should be the first general criteria for the variational inequalities for kernels not necessarily of convolution type. The \(L^2\)-boundedness assumption that we verified here is also the starting point of the related results on the (sharp) weighted norm inequalities appeared in many recent papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akcoglu, M., Jones, R., Schwartz, P.: Variation in probability, ergodic theory and analysis. Ill. J. Math. 42, 154–177 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Bourgain, J.: Pointwise ergodic theorems for arithmetic sets. Inst. Hautes Études SCI Publ. Math. 69, 5–41 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain, J., Mirek, M., Stein, E.M., Wróbel, B.: Dimension-free variational estimates on \(L^p({\mathbb{R} }^d)\) for symmetric convex bodies. Geom. Funct. Anal. 28, 58–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Campbell, J., Jones, R., Reinhold, K., Wierdl, M.: Oscillation and variation for the Hilbert transform. Duke Math. J. 105, 59–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campbell, J., Jones, R., Reinhold, K., Wierdl, M.: Oscillation and variation for singular integrals in higher dimensions. Trans. Am. Math. Soc. 355, 2115–2137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Ding, Y., Hong, G., Liu, H.: Weighted jump and variational inequalities for rough operators. J. Funct. Anal. 274, 2446–2475 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Ding, Y., Hong, G., Xiao, J.: Some jump and variational inequalities for the Calderón commutators and related operators. arXiv:1709.03127

  8. de Franca Silva, F.C., Zorin-Kranich, P.: Sparse domination of sharp variational truncations. arXiv:1604.05506

  9. Ding, Y., Hong, G., Liu, H.: Jump and variation inequalities for rough operators. J. Fourier Anal. Appl. 23, 679–711 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Do, Y., Muscalu, C., Thiele, C.: Variational estimates for paraproducts. Rev. Mat. Iberoam. 28, 857–878 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duong, X.T., Li, J., Yang, D.: Variation of Calderón–Zygumund operators with Matrix Weight. Commun. Contemp. Math. 23, 2050062 (2021)

    Article  MATH  Google Scholar 

  12. Duoandikoetxea, J., Rubio de Francia, J.: Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84, 541–561 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garsia, A.M.: Martingale inequalities: seminar notes on recent progress, Mathematics Lecture Notes Series. W. A. Benjamin, Reading, MA (1973)

    MATH  Google Scholar 

  14. Gillespie, T., Torrea, J.: Dimension free estimates for the oscillation of Riesz transforms. Isr. J. Math. 141, 125–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grafakos, L.: Modern Fourier analysis. Graduate Texts in Mathematics, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  16. Hofmann, S., McIntosh, A.: Boundedness and applications of singular integrals and square functions: a survey. Bull. Math. Sci. 1, 201–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hytönen, T.P., Lacey, M.T., Pérez, C.: Sharp weighted bounds for the \(q\)-variation of singular integrals. Bull. Lond. Math. Soc. 45, 529–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jones, R., Kaufman, R., Rosenblatt, J., Wierdl, M.: Oscillation in ergodic theory. Ergod. Theory Dyn. Syst. 18, 889–935 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jones, R., Rosenblatt, J., Wierdl, M.: Oscillation inequalities for rectangles. Proc. Am. Math. Soc. 129, 1349–1358 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jones, R., Rosenblatt, J., Wierdl, M.: Oscillation in ergodic theory: higher dimensional results. Isr. J. Math. 135, 1–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jones, R., Seeger, A., Wright, J.: Strong variational and jump inequalities in harmonic analysis. Trans. Am. Math. Soc. 360, 6711–6742 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krause, B., Zorin-Kranich, P.: Weighted and vector-valued variational estimates for ergodic averages. Ergod. Theory Dyn. Syst. 38, 244–256 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Le Merdy, C., Xu, Q.: Strong q-variation inequalities for analytic semigroups. Ann. Inst. Fourier (Grenoble) 62, 2069–2097 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lépingle, D.: La variation d’ordre \(p\) des semi-martingales. Z. Wahrsch. Verw. Gebiete. 36, 295–316 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lerner, A.K.: On pointwise estimates involving sparse operators. N. Y. J. Math. 22, 341–349 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Ma, T., Torrea, J., Xu, Q.: Weighted variation inequalities for differential operators and singular integrals. J. Funct. Anal. 268, 376–416 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma, T., Torrea, J., Xu, Q.: Weighted variation inequalities for differential operators and singular integrals in higher dimensions. Sci. China Math. 60, 1419–1442 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mas, A., Tolsa, X.: Variation for the Riesz transform and uniform rectifiability. J. Eur. Math. Soc. 16, 2267–321 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mas, A., Tolsa, X.: \(L^p\) estimates for the variation for singular integrals on uniformly rectifiable sets. Trans. Am. Math. Soc. 369, 8239–8275 (2017)

    Article  MATH  Google Scholar 

  30. Mirek, M., Trojan, B.: Discrete maximal functions in higher dimensions and applications to ergodic theory. Am. J. Math. 138, 1495–1532 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mirek, M., Stein, E.M., Trojan, B.: \(\ell _p(Z^d)\)-estimates for discrete operators of Radon type: variational estimates. Invent. Math. 209, 665–748 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mirek, M., Trojan, B., Zorin-Kranich, P.: Variational estimates for averages and truncated singular integrals along the prime numbers. Trans. Am. Math. Soc. 69, 5403–5423 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oberlin, R., Seeger, A., Tao, T., Thiele, C., Wright, J.: A variation norm Carleson theorem. J. Eur. Math. Soc. 14, 421–464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pisier, G., Xu, Q.: The strong \(p\)-variation of martingales and orthogonal series. Probab. Theory Relat. Fields. 77, 497–514 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qian, J.: The \(p\)-variation of partial sum processes and the empirical process. Ann. Probab. 77, 1370–1383 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Stein, E.M.: Harmonic analysis, real variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  37. Zorin-Kranich, P.: Variation estimates for averages along primes and polynomials. J. Funct. Anal. 268, 210–238 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the referees for giving several valuable suggestions, which have greatly improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Ethics declarations

Conflict of interest

We hereby certify that this paper consists of original, unpublish work which is not under consideration for publication elsewhere. There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The project was in part supported by: Yanping Chen’s National Natural Science Foundation of China (# 11871096, # 11471033); Guixiang Hong’s National Natural Science Foundation of China (# 11601396).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hong, G. The \(L^2\)-Boundedness of the Variational Calderón–Zygmund Operators. J Geom Anal 33, 73 (2023). https://doi.org/10.1007/s12220-022-01177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01177-7

Keywords

Mathematics Subject Classification

Navigation