Skip to main content
Log in

Two Normalized Solutions for the Chern–Simons–Schrödinger System with Exponential Critical Growth

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate normalized solutions for the Chern–Simons–Schrödinger system with a trapping potential \(V(x)=\omega |x|^{2}\) and a exponential critical growth f(u). The solutions correspond to critical points of the underlying energy functional subject to the \(L^{2}\)-norm constraint, namely, \(\int _{\mathbb {R}^{2}}|u|^{2}dx=c\) for \(c>0\) given. Under some suitable assumptions on f,  we show that the system has at least two normalized solutions \(u_{c},\hat{u}_{c}\in H^{1}(\mathbb {R}^{2})\), depending on the trapping frequency \(\omega \) and the mass c, where \(u_{c}\) is a ground state with positive energy and orbitally stable, while \(\hat{u} _{c}\) is a high-energy solution with positive energy. In addition, the asymptotic behavior of the solution \(u_{c}\) as \(c\rightarrow 0\) is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Ji, C., Miyagaki, O.H.: Normalized solutions for a Schrödinger equation with critical growth in \(\mathbb{R} ^{N}\). Calc. Var. Partial Differ. Equ. 61, 18 (2022)

    Article  MATH  Google Scholar 

  2. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272, 4998–5037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellazzini, J., Boussaid, N., Jeanjean, L., Visciglia, N.: Existence and stability of standing waves for supercritical NLS with a partial confinement. Commun. Math. Phys. 353, 229–251 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellazzini, J., Jeanjean, L.: On dipolar quantum gases in the unstable regim. SIAM J. Math. Anal. 48, 2028–2058 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergé, L., De Bouard, A., Saut, J.C.: Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation. Nonlinearity 8, 235–253 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575–1608 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byeon, J., Huh, H., Seok, J.: On standing waves with a vortex point of order \(N\) for the nonlinear Chern-Simons-Schrödinger equations. J. Differ. Equ. 261, 1285–1316 (2016)

    Article  MATH  Google Scholar 

  8. Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb{R} ^{2}\). Commun. Partial Differ. Equ. 17, 407–435 (1992)

    Article  MATH  Google Scholar 

  9. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  MATH  Google Scholar 

  10. Chen, H., Xie, W.: Existence and multiplicity of normalized solutions for the nonlinear Chern-Simons-Schrödinger equations. Ann. Acad. Sci. Fenn. Math. 45, 429–449 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, Y., Peng, S., Shuai, W.: Nodal standing waves for a gauged nonlinear Schrodinger equation in \(\mathbb{R} ^{2}\). J. Differ. Equ. 264, 4006–4035 (2018)

    Article  MATH  Google Scholar 

  12. Dunne, V.: Self-Dual Chern-Simons Theories. Springer, New York (1995)

    Book  MATH  Google Scholar 

  13. Gou, T., Zhang, Z.: Normalized solutions to the Chern-Simons-Schrödinger system. J. Funct. Anal. 280, 108894 (2021)

    Article  MATH  Google Scholar 

  14. Han, J., Huh, H., Seok, J.: Chern-Simons limit of the standing wave solutions for the Schrödinger equations coupled with a neutral scalar field. J. Funct. Anal. 266, 318–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huh, H.: Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field. J. Math. Phys. 53, 063702 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, C., Fang, F.: Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth. J. Math. Anal. Appl. 450, 578–591 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jackiw, R., Pi, S.-Y.: Classical and quantal nonrelativistic Chern-Simons theory. Phys. Rev. D 42, 3500–3513 (1990)

    Article  MathSciNet  Google Scholar 

  19. Kang, J., Tang, C.: Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Commun. Math. Appl. Anal. 19, 5239–5252 (2020)

    MATH  Google Scholar 

  20. Li, G., Li, Y., Tang, C.: Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth. Complex Var. Elliptic Equ. 66, 476–486 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, G., Luo, X.: Normalized solutions for the Chern-Simons-Schrödinger equation in \(\mathbb{R} ^{2}\). Ann. Acad. Sci. Fenn. Math. 42, 405–428 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, B.P., Smith, P.: Global wellposedness of the equivariant Chern-Simons-Schrödinger equation. Rev. Mat. Iberoam. 32, 751–794 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, B.P., Smith, P., Tataru, D.: Local wellposedness of Chern-Simons-Schrödinger. Int. Math. Res. Not. 2014, 6341–6398 (2014)

    Article  MATH  Google Scholar 

  24. Liu, Z., Ouyang, Z., Zhang, J.: Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in \(\mathbb{R} ^{2}\). Nonlinearity 32, 3082–3111 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo, X.: Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation. Z. Angew. Math. Phys. 69, 58 (2018)

    Article  MATH  Google Scholar 

  26. Luo, X.: Existence and stability of standing waves for a planar gauged nonlinear Schrödinger equation. Comput. Math. Appl. 76, 2701–2709 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moser, J.: A sharp form of an inequality by N. Trudinger. Ind. Univ. Math. J. 20, 1077–1092 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oh, S.J., Pusateri, F.: Decay and scattering for the Chern-Simons-Schrödinger equations. Int. Math. Res. Not. 2015, 13122–13147 (2015)

    Article  MATH  Google Scholar 

  29. Pomponio, A., Ruiz, D.: A variational analysis of a gauged nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 1463–1486 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Selem, F.H., Hajaiej, H., Markowich, P.A., Trabelsi, S.: Variational approach to the orbital stability of standing waves of the Gross-Pitaevskii equation. Milan J. Math. 84, 273–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, L.: Ground state solutions for a class of gauged Schrödinger equations with subcritical and critical exponential growth. Math. Method Appl. Sci. 43, 536–551 (2020)

    Article  MATH  Google Scholar 

  32. Trudinger, N.S.: On imbedding into Orlicz spaces and some application. J. Math Mech. 17, 473–484 (1967)

    MathSciNet  MATH  Google Scholar 

  33. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1982/1983)

  34. Yuan, J.: Multiple normalized solutions of Chern-Simons-Schrödinger system. Nonlinear Differ. Equ. Appl. 22, 1801–1816 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

H. Chen was supported by the National Natural Science Foundation of China (Grant No. 12071486). J. Sun was supported by the National Natural Science Foundation of China (Grant No. 11671236) and Shandong Provincial Natural Science Foundation (Grant No. ZR2020JQ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Sun.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Chen, H. & Sun, J. Two Normalized Solutions for the Chern–Simons–Schrödinger System with Exponential Critical Growth. J Geom Anal 33, 91 (2023). https://doi.org/10.1007/s12220-022-01142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01142-4

Keywords

Mathematics Subject Classification

Navigation