Skip to main content

Advertisement

Log in

Heat Kernel and Monotonicity Inequalities on the Graph

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(G=(V,E)\) be a connected locally finite graph with the \(\mathrm {CD}^{\psi }\) condition for some \(\mathrm {C}^1\), concave function \(\psi : (0,+\infty )\rightarrow \mathbf {R}\). In this paper, based on the gradient estimate and Harnack inequality for the positive solution to the heat equation on G established by Münch, we get the heat kernel estimate. We also derive a logarithmic inequality of the heat kernel by an observation of the short time behavior of the heat kernel. We also define the Fisher information, the Shannon entropy and the \(\mathcal {W}\)-functional, and establish monotone inequalities for these functionals along the heat equation on G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.T.: Li-Yau inequality on graphs. J. Differ. Geom. 99, 359–405 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Cao, H.D., Zhu, X.P.: A complete proof of the Poincaré and geometrization conjectures-Application of the Hamilton–Perelman theory of the Ricci flow. Asian J. Math. 10(2), 165–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colding, T.H.: New monotonicity formulas for Ricci curvature and applications I. Acta Math. 209, 229–263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colding, T.H., Minicozzi II, W.P.: Monotonicity-analytic and geometric implications. arXiv:1205.6768v2

  5. Gong, C., Lin, Y., Liu, S., Yau, S.T.: Li-Yau inequality for unbounded Laplacian on graphs. Adv. Math. 357(1), 106822 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Horn, P., Lin, Y., Liu, S., Yau, S.T.: Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs. J. Reine Angew. Math. (Crelles Journal) 757, 89–130 (2019)

    Article  MATH  Google Scholar 

  7. Hua, B.B., Lin, Y.: Stochastic completeness for graphs with curvature dimension conditions. Adv. Math. 306(14), 279–302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12(5), 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  10. Liu, S.: Buser’s inequality on infinite graphs. J. Math. Anal. Appl. 475(2), 1416–1426 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, S.P., Münch, F., Peyerimhoff, N.: Bakry–Émery curvature and diameter bounds on graphs. Calc. Var. Partial Differ. Equ. 57, 67 (2018)

    Article  MATH  Google Scholar 

  12. Lv, Y., Wang, L.F.: Gradient estimates on connected graphs with the \(CD\psi (m, K)\) condition. Ann. Mater. Pura Appl. 198, 2207–2225 (2019)

    Article  MATH  Google Scholar 

  13. Morgan, J., Tian, G.: Ricci Flow and the Poincaré Conjecture. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  14. Münch, F.: Remarks on curvature dimension conditions on graphs. Calc. Var. Partial Differ. Equ. 56, 11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Münch, F.: Li-Yau inequality on finite graphs via non-linear curvature dimension conditions. J. Math. Pures Appl. 120, 130–164 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ni, L.: The entropy formula for linear heat equation. J. Geom. Anal. 14(1), 87–100 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ni, L.: Addenda to ‘The entropy formula for linear heat equation’. J. Geom. Anal. 14(2), 329–335 (2004)

    Article  MATH  Google Scholar 

  18. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv: math.DG/0211159

  19. Vladimir, I.A.: Ordinary differential equations. Springer, 1992-4. ISBN: 9780387548135

  20. Wang, L.F.: A new entropy formula for the linear heat equation. Arch. Math. 96, 473–481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, L.F.: Monotonicity formulas via the Bakry-Émery curvature. Nonlinear Anal. 89, 230–241 (2013)

  22. Wang, L.F., Zhang, Z.Y.: Gradient estimates for the heat equation on graphs. Commun. Anal. Geom. 27(4), 965–989 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Feng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L.F. Heat Kernel and Monotonicity Inequalities on the Graph. J Geom Anal 33, 38 (2023). https://doi.org/10.1007/s12220-022-01093-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01093-w

Keywords

Mathematics Subject Classification

Navigation