Abstract
We study the Hardy identities and inequalities on Cartan-Hadamard manifolds using the notion of a Bessel pair. These Hardy identities offer significantly more information on the existence/nonexistence of the extremal functions of the Hardy inequalities. These Hardy inequalities are in the spirit of Brezis-Vázquez in the Euclidean spaces. As direct consequences, we establish several Hardy type inequalities that provide substantial improvements as well as simple understandings to many known Hardy inequalities and Hardy-Poincaré-Sobolev type inequalities on hyperbolic spaces in the literature.
Similar content being viewed by others
References
Adimurthi, Chaudhuri N., Ramaswamy, M.: An improved Hardy-Sobolev inequality and its application. Proc. Am. Math. Soc. 130(2), 489–505 (2002)
Akutagawa, K., Kumura, H.: Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds. Calc. Var. Part. Differ. Equ. 48, 67–88 (2013)
Balinsky, A.A., Evans, W.D., Lewis, R.T.: The analysis and geometry of Hardy’s inequality. Universitext, p. 263. Springer, Cham (2015)
Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved \(L^{p}\) Hardy inequalities with best constants. Trans. Am. Math. Soc. 356(6), 2169–2196 (2004)
Beckner, W.: Pitt’s inequality and the fractional Laplacian: sharp error estimates. Forum Math. 24(1), 177–209 (2012)
Berchio, E., D’Ambrosio, L., Ganguly, D., Grillo, G.: Improved \(L^{p}\)-Poincaré inequalities on the hyperbolic space. Nonlinear Anal. 157, 146–166 (2017)
Berchio, E., Ganguly, D., Grillo, G.: Sharp Poincaré-Hardy and Poincaré-Rellich inequalities on the hyperbolic space. J. Funct. Anal. 272, 1661–1703 (2017)
Berchio, E., Ganguly, D., Grillo, G.: Improved multipolar Poincaré-Hardy inequalities on Cartan-Hadamard manifolds. Ann. Mat. Pura Appl. (4) 199(1), 65–80 (2020)
Berchio, E., Ganguly, D., Grillo, G., Pinchover, Y.: An optimal improvement for the Hardy inequality on the hyperbolic space and related manifolds. Proc. Roy. Soc. Edinb. Sect. A 150(4), 1699–1736 (2020)
Bosi, R., Dolbeault, J., Esteban, M.J.: Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Commun. Pure Appl. Anal. 7(3), 533–562 (2008)
Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1–2), 217–237 (1998)
Brezis, H., Marcus, M., Shafrir, I.: Extremal functions for Hardy’s inequality with weight. J. Funct. Anal. 171(1), 177–191 (2000)
Brezis, H., Vázquez, J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10(2), 443–469 (1997)
Carron, G.: Inégalités de Hardy sur les variétés riemanniennes non-compactes. J. Math. Pures Appl. (9) 76(10), 883–891 (1997)
Cazacu, C.: New estimates for the Hardy constants of multipolar Schrödinger operators. Commun. Contemp. Math. 18(5), 1550093 (2016)
Cazacu, C., Zuazua, E.: Improved multipolar Hardy inequalities. In: Studies in phase space analysis with applications to PDEs. Progr. Nonlinear Differential Equations Appl., vol. 84, pp. 35–52. Springer, New York (2013)
Chan, H., Ghoussoub, N., Mazumdar, S., Shakerian, S., de Oliveira Faria, L.F.: Mass and extremals associated with the Hardy-Schrödinger operator on hyperbolic space. Adv. Nonlinear Stud. 18(4), 671–689 (2018)
D’Ambrosio, L., Dipierro, S.: Hardy inequalities on Riemannian manifolds and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 449–475 (2014)
Davies, E.B.: A review of Hardy inequalities. The Maz’ya anniversary collection, Vol. 2 (Rostock, 1998), vol. 110, pp. 55–67, Oper. Theory Adv. Appl., Birkhäuser, Basel, (1999)
Devyver, B., Fraas, M., Pinchover, Y.: Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon. J. Funct. Anal. 266(7), 4422–4489 (2014)
Devyver, B., Pinchover, Y.: Optimal \(L^{p}\) Hardy-type inequalities. Ann. Inst. H. Poincaré Anal. Non. Linéaire. 33(1), 93–118 (2016)
Druet, O., Hebey, E.: The \(AB\) program in geometric analysis: sharp Sobolev inequalities and related problems. Mem. Am. Math. Soc. 160(761), 98 (2002)
Duy, N., Lam, N., Lu, G.: \(p\)-Bessel pairs, Hardy’s identities and inequalities and Hardy-Sobolev inequalities with monomial weights. J. Geom. Anal. 32(4), 109 (2022)
Flynn, J.: Sharp Caffarelli-Kohn-Nirenberg-type inequalities on Carnot groups. Adv. Nonlinear Stud. 20(1), 95–111 (2020)
Flynn, J., Lam, N., Lu, G.: Sharp Hardy identities and inequalities on Carnot groups. Adv. Nonlinear Stud. 21(2), 281–302 (2021)
Flynn, J., Lam, N., Lu, G. \(L^p\) Hardy identities and inequalities with respect to the distance and mean distance to the boundary. Preprint
Flynn, J., Lam, N., Lu, G.: Hardy-Poincaré-Sobolev type inequalities on hyperbolic spaces and related Riemannian manifolds. J. Funct. Anal. 283(12), 109714 (2022)
Frank, R., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255(12), 3407–3430 (2008)
Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry, 3rd edn. Springer, Berlin (2004)
Gazzola, F., Grunau, H.-C., Mitidieri, E.: Hardy inequalities with optimal constants and remainder terms. Trans. Am. Math. Soc. 356(6), 2149–2168 (2004)
Gesztesy, F., Littlejohn, L.: Factorizations and Hardy-Rellich-type inequalities. In: Non-linear partial differential equations, mathematical physics, and stochastic analysis, pp. 207–226, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2018)
Ghoussoub, N., Moradifam, A.: Bessel pairs and optimal Hardy and Hardy-Rellich inequalities. Math. Ann. 349(1), 1–57 (2011)
Ghoussoub, N., Moradifam, A.: Functional inequalities: new perspectives and new applications, Mathematical Surveys and Monographs, vol. 187. American Mathematical Society, Providence (2013)
Kombe, I., Ozaydin, M.: Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 361, 6191–6203 (2009)
Kombe, I., Ozaydin, M.: Hardy-Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 365, 5035–5050 (2013)
Kristály, A., Szakál, A.: Interpolation between Brezis-Vázquez and Poincaré inequalities on nonnegatively curved spaces: sharpness and rigidities. J. Differ. Equ. 266(10), 6621–6646 (2019)
Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy inequality. About its history and some related results. Vydavatelský Servis, Pilsen (2007)
Kufner, A., Persson, L.-E.: Weighted inequalities of Hardy type, p. 357. World Scientific Publishing Co., Inc., River Edge (2003)
Lam, N., Lu, G., Zhang, L.: Factorizations and Hardy’s type identities and inequalities on upper half spaces. Calc. Var. Partial Differ. Equ. 58(6), 183 (2019)
Lam, N., Lu, G., Zhang, L.: Geometric Hardy’s inequalities with general distance functions. J. Funct. Anal. 279(8), 108673 (2020)
Lu, G., Yang, Q.: Paneitz operators on hyperbolic spaces and high order Hardy-Sobolev-Maz’ya inequalities on half spaces. Am. J. Math. 141(6), 1777–1816 (2019)
Lu, G., Yang, Q.: Green’s functions of Paneitz and GJMS operators on hyperbolic spaces and sharp Hardy-Sobolev-Maz’ya inequalities on half spaces. Adv. Math. 398, 108156 (2022)
Ma, X., Wang, X., Yang, Q.: Hardy-Adams Inequalities on \(\mathbb{H}^{2} \times \mathbb{R}^{n-2}\). Adv. Nonlinear Stud. 21(2), 327–345 (2021)
Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, p. 866. Springer, Heidelberg (2011)
Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 44, 31–38 (1972)
Ngô, Q.A., Nguyen, V.H.: Sharp constant for Poincaré-type inequalities in the hyperbolic space. Acta Math. Vietnam. 44(3), 781–795 (2019)
Nguyen, V.H.: New sharp Hardy and Rellich type inequalities on Cartan-Hadamard manifolds and their improvements. Proc. Roy. Soc. Edinb. Sect. A (2017). https://doi.org/10.1017/prm.2019.37
Opic, B., Kufner, A.: Hardy-type inequalities. Pitman Research Notes in Mathematics Series, vol. 219, p. 333. Longman Scientific & Technical, Harlow (1990)
Sandeep, K., Tintarev, C.: A subset of Caffarelli-Kohn-Nirenberg inequalities in the hyperbolic space \(\mathbb{H} ^{N}\). Ann. Mat. Pura Appl. (4) 196(6), 2005–2021 (2017)
Vázquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173(1), 103–153 (2000)
Yang, Q., Su, D., Kong, Y.: Hardy inequalities on Riemannian manifolds with negative curvature. Commun. Contemp. Math. 16, 1350043 (2014)
Wang, J.: \(L^p\) Hardy’s identities and inequalities for Dunkl operators. Adv. Nonlinear Stud. 22(1), 416–435 (2022)
Funding
Joshua Flynn and Guozhen Lu were partly supported by a grant from the Simons Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Flynn, J., Lam, N., Lu, G. et al. Hardy’s Identities and Inequalities on Cartan-Hadamard Manifolds. J Geom Anal 33, 27 (2023). https://doi.org/10.1007/s12220-022-01079-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12220-022-01079-8
Keywords
- Hardy’s identities
- Hardy’s inequalities
- Hardy-Poincaré–Sobolev inequalities
- Cartan-Hadamard manifold
- Hyperbolic space