Skip to main content
Log in

Invariant Conformal Killing–Yano 2-Forms on Five-Dimensional Lie Groups

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study left invariant conformal Killing–Yano (CKY) 2-forms on Lie groups endowed with a left invariant metric. We classify all 5-dimensional metric Lie algebras carrying CKY tensors that are obtained as a one-dimensional central extension of 4-dimensional metric Lie algebras endowed with an invertible parallel skew-symmetric tensor. On the other hand, we also classify 5-dimensional metric Lie algebras with center of dimension greater than one admitting strict CKY tensors. In addition, we determine all possible CKY tensors on these metric Lie algebras. In particular, we exhibit the first examples of CKY 2-forms on metric Lie algebras which do not admit any Sasakian structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrada, A., Dotti, I.: Conformal Killing–Yano \(2\)-forms. Differ. Geom. Appl. 58, 103–119 (2018)

    Article  MathSciNet  Google Scholar 

  2. Andrada, A., Dotti, I.: Killing–Yano \(2\)-forms on \(2\)-step nilpotent Lie groups. Geom. Dedicata. 212, 415–424 (2021)

    Article  MathSciNet  Google Scholar 

  3. Andrada, A., Barberis, M.L., Dotti, I., Ovando, G.: Product structures on four dimensional solvable Lie algebras. Homol. Homotopy Appl. 7, 9–37 (2005)

    Article  MathSciNet  Google Scholar 

  4. Andrada, A., Fino, A., Vezzoni, L.: A class of Sasakian \(5\) manifolds. Transf. Groups 14, 493–512 (2009)

    Article  MathSciNet  Google Scholar 

  5. Andrada, A., Barberis, M.L., Dotti, I.: Invariant solutions to the conformal Killing-Yano equation on Lie groups. J. Geom. Phys. 94, 199–208 (2015)

    Article  MathSciNet  Google Scholar 

  6. Andrada, A., Barberis, M.L., Moroianu, A.: Conformal Killing \(2\)-forms on \(4\)-dimensional manifolds Ann. Glob. Anal. Geom. 50, 381–394 (2016)

    Article  Google Scholar 

  7. Barberis, M.L., Dotti, I., Santillán, O.: The Killing-Yano equation on Lie groups. Class. Quantum Grav. 29, 065004 (2012)

  8. Belgun, F., Moroianu, A., Semmelmann, U.: Killing forms on symmetric spaces. Differ. Geom. Appl. 24, 215–222 (2006)

    Article  MathSciNet  Google Scholar 

  9. Boyer, C.P., T\(\phi \)nnesen-Friedman, C.W.: Extremal Sasakian geometry on \(T^2\times S^3\) and related manifolds. Compos. Math. 149, 1431–1456 (2013)

  10. Cappelletti-Montano, B., De Nicola, A., Marrero, J.C., Yudin, I.: Sasakian nilmanifolds. IMRN 15, 6648–6660 (2014)

    MATH  Google Scholar 

  11. de Graaf, W.: Classification of \(6\)-dimensional nilpotent Lie algebras over fields of characteristic not \(2\). J. Algebra 309, 640–653 (2007)

    Article  MathSciNet  Google Scholar 

  12. del Barco, V., Moroianu, A.: Killing forms on \(2\)-step nilmanifolds. J. Geom. Anal. 31, 863–887 (2021)

    Article  MathSciNet  Google Scholar 

  13. del Barco, V., Moroianu, A.: Conformal Killing forms on \(2\)-step nilpotent Riemannian Lie groups. Forum Math. 33, 1331–1347 (2021)

    Article  MathSciNet  Google Scholar 

  14. Figula, A., Nagy, P.: Isometry classes of simply connected nilmanifolds. J. Geom. Phys. 132, 370–381 (2018)

    Article  MathSciNet  Google Scholar 

  15. Herrera, A.: Parallel skew-symmetric tensors on \(4\)-dimensional metric Lie algebras. Rev. Un. Mat. Argentina. https://doi.org/10.33044/revuma.2451

  16. Kashiwada, T.: On conformal Killing tensor. Nat. Sci. Rep. Ochanomizu Univ. 19, 67–74 (1968)

    MathSciNet  MATH  Google Scholar 

  17. Malcev, A.: On solvable Lie algebras. Bull. Acad. Sci. URSS Sr. Math. Izvestia Akad. Nauk SSSR 9, 329–356 (1945)

    MathSciNet  Google Scholar 

  18. Milnor, J.: Curvature of left-invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  Google Scholar 

  19. Moroianu, A., Semmelmann, U.: Killing forms on quaternion-Kähler manifolds. Ann. Global Anal. Geom. 28, 319–335 (2005); erratum 34 (2008), 431–432

  20. Moroianu, A., Semmelmann, U.: Twistor forms on Riemannian products. J. Geom. Phys. 58, 1343–1345 (2008)

    Article  MathSciNet  Google Scholar 

  21. Mostow, G.: Discrete subgroup of Lie groups. Adv. Math. 15, 112–123 (1975)

    Article  MathSciNet  Google Scholar 

  22. Ovando, G.: Complex, symplectic and Kähler structures on four dimensional Lie groups. Rev. Un. Mat. Argentina 45, 55–68 (2004)

    MathSciNet  MATH  Google Scholar 

  23. SageMath, the Sage Mathematics Software System (Version 9.2), The Sage Developers (2020). http://www.sagemath.org

  24. Semmelmann, U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245, 503–527 (2003)

    Article  MathSciNet  Google Scholar 

  25. Stepanov, S.E.: The vector space of conformal Killing forms on a Riemannian manifold. J. Math. Sci. 110, 2892–2906 (2002)

    Article  MathSciNet  Google Scholar 

  26. Tachibana, S.: On conformal Killing tensors on Riemannian manifolds. Tohoku Math. J. 21, 56–64 (1969)

    MathSciNet  MATH  Google Scholar 

  27. Walker, M., Penrose, R.: On quadratic first integrals of the geodesic equations for type \(\{22\}\) spacetimes. Commun. Math. Phys. 18, 265–274 (1970)

    Article  MathSciNet  Google Scholar 

  28. Yano, K.: Some remarks on tensor fields and curvature. Ann. Math. 55, 328–347 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work has been set up during the visit of the first-named author at KU Leuven, she thanks the Mathematics department at Campus Kulak Kortrijk for their hospitality. The authors would like to thank Adrián Andrada for several interesting discussions on the subject, and we are also grateful to the anonymous referee for carefully reading the manuscript and her/his suggestions that improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Origlia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by CONICET, ANPCyT and SECyT-UNC (Argentina). The second author was also supported by the Research Foundation - Flanders (FWO Project G.0F93.17N) and ARC (Australia) DP190100317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera, A., Origlia, M. Invariant Conformal Killing–Yano 2-Forms on Five-Dimensional Lie Groups. J Geom Anal 32, 210 (2022). https://doi.org/10.1007/s12220-022-00951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00951-x

Keywords

Mathematics Subject Classification

Navigation