Skip to main content
Log in

Electromagnetic Riemann–Hilbert Boundary Value Problem in Fractal Domains of \({\mathbb R}^2\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we present a hyperholomorphic (associated to the Helmholtz equation) approach to the Riemann–Hilbert boundary value problem (RHBVP for short) in domains of \({\mathbb R}^2\) with \(h-\)summable boundaries. We apply our results to Maxwell’s system and study an electromagnetic RHBVP for the case time-harmonic. The study is based on a reformulation of the time-harmonic Maxwell system in terms of electromagnetic potentials. The main geometric ingredient is the \(h-\)summability condition assumed for domains’ boundaries, which are considered fractals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data and Material Availability

No data were used to support this study.

Code Availability

Not applicable.

References

  1. Abreu, Blaya R., Ávila, Ávila. R., Bory, Reyes J.: Boundary value problems for Dirac operators and Maxwell’s equations in fractal domains. Math. Methods Appl. Sci. 38, 393–402 (2015)

    Article  MathSciNet  Google Scholar 

  2. Abreu, Blaya R., Bory, Reyes J.: Boundary value problems for quaternionic monogenic functions on non-smooth surfaces. Adv. Appl. Clifford Algebras 9(1), 1–22 (1999)

    Article  MathSciNet  Google Scholar 

  3. Abreu, Blaya R., Bory, Reyes J., Moreno, García T., Peña-Pérez, Y.: Analytic Riemann boundary value problem on h-summable closed curves. Appl. Math. Comput. 227, 593–600 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Ammari, H., Bao, G., Wood, A.W.: An integral equation method for the electromagnetic scattering from cavities. Math. Methods Appl. Sci. 23(12), 1057–1072 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bari, N.K., Stechkin, S.B.: Best aproximations and diferential properties of two conjugate functions (in Russian). Proc. Moscow Math. Soc. 5, 483–522 (1956)

    Google Scholar 

  6. Bernstein, S.: On the left linear Riemann problem in Clifford analysis. Bull. Belg. Math. Soc. 3, 557–576 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Bory, R.J., Abreu, B.R., Rodríguez, D.R.M., Kats, B.A.: On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation. Anal. Math. Phys. 9, 483–496 (2019)

    Article  MathSciNet  Google Scholar 

  8. Colton, D., Kress, R.: Integral Equations Methods in Scattering Theory. Wiley, New York (1983)

    MATH  Google Scholar 

  9. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)

    Book  Google Scholar 

  10. Dolzhenko, E.P.: On the removal of singularities of analytic functions. Am. Math. Soc. Transl. 97, 33–41 (1970)

    MATH  Google Scholar 

  11. Fueter, R.: Analytische funktionen einer quaternionen variable. Comment. Math. Helv. 4, 9–20 (1932)

    Article  MathSciNet  Google Scholar 

  12. Gakhov, F.D.: Boundary Value Problems. Dover, New York (1990)

    MATH  Google Scholar 

  13. Galtsov, D.V., Grats, Y.V., Zhukovskij, V.C.: Classical fields, p. 150. University Press, Moscow (1991)

    Google Scholar 

  14. Gürlebeck, K., Habetha, K., Sprössig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  15. Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäusser, Boston (1990)

    Book  Google Scholar 

  16. Guseinov, A.I., Mukhtarov, H.S.: Introduction to the Theory of Nonlinear Singular Integral Equations. Nauka, Moscow (1980)

    Google Scholar 

  17. Guseynov, Y.: Integrable boundaries and fractals for Hölder classes; the Gauss–Green theorem. Calc. Var, Vol. 55, 103 (2016)

    Article  MathSciNet  Google Scholar 

  18. Harrison, J., Norton, A.: The Gauss Green theorem for fractal boundaries. Duke Math. J. 67(3), 575–588 (1992)

    Article  MathSciNet  Google Scholar 

  19. Heungju, A., Hong, R.C., Jong, D.P.: Hölder type estimates for the \({{\overline{\partial }}}-\)equations in strongly pseudoconvex domains. Rend. Semin. Mat. Univ. Padova 120, 127–138 (2008)

    Article  MathSciNet  Google Scholar 

  20. Kirsch, A., Hettlich, F.: The Mathematical Theory of Time-Harmonic Maxwell’s Equations. Expansion-, Integral-, and Variational Methods. Applied Mathematical Sciences, vol. 190. Springer, Cham (2015)

    Book  Google Scholar 

  21. Kravchenko, V.V.: Applied Quaternionic Analysis. Heldermann, Berlin (2003)

    MATH  Google Scholar 

  22. Kravchenko, V.V., Shapiro, M.: Integral Representations for Spatial Models of Mathematical Physics. Research Notes in Mathematics, vol. 351. Pitman Advanced Publi. Prog, London (1996)

    MATH  Google Scholar 

  23. Li, D., Mao, J.F.: A Koch-like sided fractal bow-tie dipole antenna. IEEE Trans. Antennas Propag. 60(5), 2242–2251 (2012)

    Article  MathSciNet  Google Scholar 

  24. Lu, J.K.: Boundary Value Problems for Holomorphic Functions. Series in Pure Mathematics, vol. 16. World Scientific, Singapore (1993)

    Google Scholar 

  25. Magnanini, R., Santosa, F.: Wave propagation in a 2-D optical waveguide. SIAM J. Appl. Math. 61(4), 1237–1252 (2000–2001)

  26. Mitrea, M.: Boundary value problems for Dirac operators and Maxwell’s equations in non-smooth domains. Math. Methods Appl. Sci. 25(16–18), 1355–1369 (2002)

    Article  MathSciNet  Google Scholar 

  27. Moisil, C.G., Theodoresco, N.: Fonctions holomorphes dans lspace, matematicae. CLUJ 5, 142–150 (1931)

    MATH  Google Scholar 

  28. Müller, C.: Randwertprobleme der Theorie elektromagnetischer Schwingungen. Math. Z 56(3), 261–270 (1952)

    Article  MathSciNet  Google Scholar 

  29. Muskhelishvili, N.: Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics. Dover, New York (1992)

    Google Scholar 

  30. Peña Pérez, Y., Abreu Blaya, R., Bosch, P., Bory Reyes, J.: Dirichlet type problem for 2D quaternionic time-harmonic Maxwell system in fractal domains. Adv. Math. Phys. 2020, 8 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Shapiro, M., Tovar, L. M.: On a class of integral representations related to the two-dimensional Helmholtz operator. In Ramírez de Arellano, E., et al. (Eds.). Operator theory for complex and hypercomplex analysis. Proceedings of a conference, Mexico City, Mexico, December 12-17, 1994. Contemporary Mathematics American Mathematical Society. Providence, RI. Vol. 212, pp. 229–244 (1998)

  32. Sudbery, A.: Quaternionic analysis. Math. Proc. Philos. Soc. 85, 199–225 (1979)

    Article  MathSciNet  Google Scholar 

  33. Tricot, C.: Curves and Fractal Dimension. Springer, New York (1995)

    Book  Google Scholar 

  34. Vladimirov, V. S.: Equations of Mathematical Physics. Nauka, Moscow, 1984 (in Russian; Engl. transl. of the first edition: N. Y.: Marcel Dekker), Moscow (1971)

  35. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  36. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36, 63–89 (1934)

    Article  MathSciNet  Google Scholar 

  37. Wood, A.W.: Analysis of electromagnetic scattering from an overfilled cavity in the ground plane. J. Comput. Phys. 215(2), 630–641 (2000–2001)

Download references

Funding

Partial financial support was received from Instituto Politécnico Nacional (grant number SIP20211188) and Postgraduate Study Fellowship of the Consejo Nacional de Ciencia y Tecnología (CONACYT) (Grant Number 744134).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally in this paper and typed, read, and approved the final form of the manuscript.

Corresponding author

Correspondence to Baruch Schneider.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña-Pérez, Y., Abreu-Blaya, R., Bory-Reyes, J. et al. Electromagnetic Riemann–Hilbert Boundary Value Problem in Fractal Domains of \({\mathbb R}^2\). J Geom Anal 32, 189 (2022). https://doi.org/10.1007/s12220-022-00929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00929-9

Keywords

Mathematics Subject Classification

Navigation