Skip to main content
Log in

A Class of Strictly Pseudoconvex Domains with Non-pluripolar Core

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We construct a class of strictly pseudoconvex domains in \({\mathbb C}^d\) whose core has non-empty interior. Consequently these cores are not pluripolar. This answers a question posed by Harz, Shcherbina and Tomassini.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aytuna, A., Sadullaev, A.: Parabolic Stein manifolds. Math. Scand. 114, 86–109 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmpnic functions. Acta Math. 149, 1–40 (1992)

    Article  Google Scholar 

  3. Demailly, J.-P.: Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. Mémoires de la S. M. F. 2e série. 19 (1985)

  4. Gallagher, A.-K., Harz, T., Herbort, G.: On the dimension of the Bergman space for some unbounded domains. J. Geom. Anal. 27, 1435–1444 (2017)

    Article  MathSciNet  Google Scholar 

  5. Globevnik, J.: On Fatou–Bieberbach domains. Math. Z. 229, 91–106 (1998)

    Article  MathSciNet  Google Scholar 

  6. Harz, T.: On smoothing od plurisubharmonic functions on unbounded domains. arXiv:2104.14448

  7. Harz, T., Shcherbina, N., Tomassini, G.: Wermer type sets and extensions of CR functions. Indiana Univ. Math. J. 62, 431–459 (2012)

    Article  MathSciNet  Google Scholar 

  8. Harz, T., Shcherbina, N., Tomassini, G.: On defining functions and cores for unbounded domains I. Math. Z. 286, 987–1002 (2017)

    Article  MathSciNet  Google Scholar 

  9. Harz, T., Shcherbina, N., Tomassini, G.: On defining functions and cores for unbounded domains II. J. Geom. Anal. 30, 2293–2325 (2020)

    Article  MathSciNet  Google Scholar 

  10. Harz, T., Shcherbina, N., Tomassini, G.: On defining functions and cores for unbounded domains III. Mat. Sb. 212, 126–156 (2021)

    Article  MathSciNet  Google Scholar 

  11. Kerzman, N., Rosay, J.-P.: Fonctios plurisousharmoniques d’exhaustions bornees et domaines taut. Math. Ann. 257, 171–184 (1981)

    Article  MathSciNet  Google Scholar 

  12. Kolodziej, S.: The complex Monge-Ampere equation and pluripotential theory. Mem. AMS 173, 840 (2005)

    MATH  Google Scholar 

  13. Mongodi, S., Slodkowski, Z., Tomassini, G.: Weakly complete complex surfaces. Indiana Univ. Math. J. 67, 899–935 (2018)

    Article  MathSciNet  Google Scholar 

  14. Poletsky, E.A., Shcherbina, N.: Plurisubharmonically separable complex manifolds. Proc. Am. Math. Soc. 147, 2413–2424 (2019)

    Article  MathSciNet  Google Scholar 

  15. Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, 257–286 (1968)

    Article  MathSciNet  Google Scholar 

  16. Slodkowski, Z.: Pseudoconcave decompositions in complex manifolds. Contemp. Math. 735, 239–259 (2019)

    Article  MathSciNet  Google Scholar 

  17. Slodkowski, Z., Tomassini, G.: Minimal kernels of weakly complete spaces. J. Funct. Anal. 210, 125–147 (2004)

    Article  MathSciNet  Google Scholar 

  18. Smith, P.: Smoothing plurisubharmonic functions on complex spaces. Math. Ann. 273, 397–413 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to J.-P. Demailly for providing references regarding parabolic varieties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Slodkowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Appendix

A. Appendix

Proposition A.1

Let P(zw) be a nonconstant complex polynomial. Then either

  1. (i)

    there are at most finitely many complex lines \(L_1, L_2, \ldots , L_s\) in \({\mathbb C}^2\), that are disjoint from the zero set of P; or

  2. (ii)

    there is a complex line \(L_0\), such that P is constant on every line \(L'\) parallel to \(L_0\), and so, every complex line L that is not parallel to \(L_0\) must intersect the zero set of P.

Proof

Let \({\mathcal L}\) denote the set of all complex lines L in \({\mathbb C}^2\) such that P is not vanishing on L. Then P|L is constant.

Case(a) Suppose not all lines in \({\mathcal L}\) are parallel. We claim that in this case there are at most d lines in \({\mathcal L}\), where d is the degree of P.

Suppose this is false; then we can choose \((d+1)\) distinct lines \(L_0, L_1, \ldots , L_d\) in \({\mathcal L}\), so that \(L_0\) and \(L_1\) intersect. Then every \(L_i\) intersect \(L_0\) or \(L_1\), and so \(S:=\bigcup _{0\le i \le d} L_i\) is connected, and \(P|S = c\) where c is a constant. Consider any point \(p\in {\mathbb C}^2 \setminus S\). Then there is a complex line \(L^*\) through p that intersects every line \(L_i\), for \(i=0, 1 ,\ldots , d\), but does not pass through any of their intersection points. (We skip easy details here.) Then P|L has the same value c at each of the \((d+1)\) distinct intersection points of \(L^*\) with S. Since degree of the polynomial \(P|L^*\) is less than \((d+1)\), \(P|L^*\) must be constant, equal c. We obtain P is constant on \({\mathbb C}^2\) contrary to the assumptions.

Case(b) Suppose \({\mathcal L}\) is a set of parallel lines, and there are more then d of them. Then P is constant on every complex line parallel to them, and every complex line transversal to \({\mathcal L}\) intersects the zero set of P.

To see this, consider \((d+1)\) distinct lines, say \(L_0, L_1,\ldots , L_d\) in \({\mathcal L}\). Choose a complex coordinate system in \({\mathcal L}\), so that \(L_i = \{(z,w)\in {\mathbb C}^2 : w =b_i \}\), with \(b_0, b_1,\ldots ,b_d\) distinct constants. Consider, for any two constants \(a, a'\) the polynomial \(P(a, w) - P(a', w)\). Since it has \((d+1)\) distinct roots (i.e. \(b_j\)’s), it is identically zero. Hence, P is constant on every line parallel to \(L_0\), and so, P being nonconstant, for every complex line L trannsversal to \(L_0\), P|L is a nonconstant polynomial and so must have a zero.

Clearly cases (a) and (b) together imply the proposition. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slodkowski, Z. A Class of Strictly Pseudoconvex Domains with Non-pluripolar Core. J Geom Anal 32, 134 (2022). https://doi.org/10.1007/s12220-022-00873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00873-8

Keywords

Mathematics Subject Classification

Navigation