Skip to main content
Log in

Existence of a Ground-State and Infinitely Many Homoclinic Solutions for a Periodic Discrete System with Sign-Changing Mixed Nonlinearities

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the existence and multiplicity of homoclinic solutions for a class of periodic discrete systems with sign-changing mixed nonlinearities that can be super-quadratic or asymptotically quadratic both at infinity and the origin. The arising problem engages two major difficulties: one is that the corresponding variational equation is strongly indefinite and the other is that common techniques cannot be directly used to verify the linking structure and confirm the boundedness of Cerami sequences. New arguments including weak*-compactness are applied to settle these two major difficulties. This allows us to prove a ground-state as well as infinitely many geometrically distinct solutions and derive a necessary and sufficient condition for a special case. To the best of our knowledge, this is the first attempt on the existence and multiplicity of homoclinic solutions for such a discrete problem with sign-changing mixed nonlinearities. Our result also considerably improves well-known ones in the literature. Furthermore, our weaker conditions may be applicable to other variational problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Physica D 103, 201–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balanov, Z., Garcia-Azpeitia, C., Krawcewicz, W.: On variational and topological methods in nonlinear difference equations. Commun. Pure Appl. Anal. 17, 2813–2844 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartsch, T., Ding, Y.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279, 1267–1288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, G., Ma, S.: Discrete nonlinear Schrödinger equations with superlinear nonlinearities. Appl. Math. Comput. 218, 5496–5507 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Chen, G., Ma, S.: Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities. Stud. Appl. Math. 131, 389–413 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G., Ma, S.: Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms. Appl. Math. Comput. 232, 787–798 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Chen, G., Ma, S., Wang, Z.-Q.: Standing waves for discrete Schrödinger equations in infinite lattices with saturable nonlinearities. J. Differ. Equ. 261, 3493–3518 (2016)

    Article  MATH  Google Scholar 

  8. Chen, W., Yang, M.: Standing waves for periodic discrete nonlinear Schrödinger equations with asymptotically linear terms. Acta Math. Appl. Sinica (Engl. Ser.) 28, 351–360 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christodoulides, D.N., Lederer, F., Silberberg, Y.: Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003)

    Article  Google Scholar 

  10. Ding, Y., Lee, C.: Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J. Differ. Equ. 222, 137–163 (2006)

    Article  MATH  Google Scholar 

  11. Ding, Y.: Variational Methods for Strongly Indefinite Problems. Interdisciplinary Mathematical Sciences, vol. 7. World Scientific Publ., Singapore (2007)

  12. Erbe, L., Jia, B., Zhang, Q.: Homoclinic solutions of discrete nonlinear systems via variational method. J. Appl. Anal. Comput. 9, 271–294 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Flach, S., Gorbach, A.V.: Discrete breathers-Advance in theory and applications. Phys. Rep. 467, 1–116 (2008)

    Article  Google Scholar 

  14. Fleischer, J.W., Carmon, T., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003)

    Article  Google Scholar 

  15. Fleischer, J.W., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003)

    Article  Google Scholar 

  16. Gorbach, A.V., Johansson, M.: Gap and out-gap breathers in a binary modulated discrete nonlinear Schrödinger model. Eur. Phys. J. D 29, 77–93 (2004)

    Article  Google Scholar 

  17. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001)

    Article  Google Scholar 

  18. Kryszewski, W., Szulkin, A.: Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differ. Equ. 3, 441–472 (1998)

    MATH  Google Scholar 

  19. Kuang, J., Guo, Z.: Homoclinic solutions of a class of periodic difference equations with asymptotically linear nonlinearities. Nonlinear Anal. 89, 208–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, G., Szulkin, A.: An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math. 4, 763–776 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, G., Wang, C.: The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition. Ann. Acad. Sci. Fenn. Math. 36, 461–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, G., Yu, J., Zhou, Z.: Homoclinic solutions of discrete nonlinear Schrödinger equations with partially sublinear nonlinearities. Electron. J. Differ. Equ. 96, 1–14 (2019)

    MATH  Google Scholar 

  23. Lin, G., Zhou, Z.: Homoclinic solutions in periodic difference equations with mixed nonlinearities. Math. Methods Appl. Sci. 39, 245–260 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, G., Zhou, Z.: Homoclinic solutions in non-periodic discrete \(\phi \)-Laplacian equations with mixed nonlinearities. Appl. Math. Lett. 64, 15–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, G., Zhou, Z.: Homoclinic solutions of discrete \(\phi \)-Laplacian equations with mixed nonlinearities. Commun. Pure Appl. Anal. 17, 1723–1747 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, G., Zhou, Z., Yu, J.: Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials. J. Dyn. Differ. Equ. 32, 527–555 (2020)

    Article  MATH  Google Scholar 

  27. Liu, S.: On superlinear Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. 45, 1–9 (2012)

    Article  MATH  Google Scholar 

  28. Livi, R., Franzosi, R., Oppo, G.-L.: Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation. Phys. Rev. Lett. 97, 060401 (2006)

    Article  Google Scholar 

  29. Ma, S., Wang, Z.: Multibump solutions for discrete periodic nonlinear Schrödinger equations. Z. Angew. Math. Phys. 64, 1413–1442 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mai, A., Zhou, Z.: Discrete solitons for periodic discrete nonlinear Schrödinger equations. Appl. Math. Comput. 222, 34–41 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Mai, A., Zhou, Z.: Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities. Abstr. Appl. Anal. 2013, 317139 (2013)

    Article  MATH  Google Scholar 

  32. Mederski, J.: Ground states of a system of nonlinear Schrödinger equations with periodic potentials. Commun. Partial Differ. Equ. 41, 1426–1440 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pankov, A.: Gap solitons in periodic discrete nonlinear Schrödinger equations. Nonlinearity 19, 27–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pankov, A.: Gap solitons in periodic discrete nonlinear Schrödinger equations II. A generalized Nehari manifold approach. Discret. Contin. Dyn. Syst. 19, 419–430 (2007)

    Article  MATH  Google Scholar 

  35. Pankov, A., Rothos, V.: Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity. Proc. R. Soc. A 464, 3219–3236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pankov, A.: Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities. J. Math. Anal. Appl. 371, 254–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pavia, F., Kryszewski, W., Szulkin, A.: Generalized Nehari manifold and semilinear Schrödinger equation with weak monotonicity condition on the nonlinear term. Proc. Am. Math. Soc. 145, 4783–4794 (2017)

    Article  MATH  Google Scholar 

  38. Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence, RI, (1986)

  39. Schechter, M., Zou, W.: Weak linking theorems and Schrödinger equations with critical Sobolev exponent. ESAIM Control Optim. Calc. Var. 9, 601–619 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schechter, M.: The use of Cerami sequences in critical point theory. Abstr. Appl. Anal. 2007, 58948 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi, H., Zhang, H.: Existence of gap solitons in periodic discrete nonlinear Schrödinger equations. J. Math. Anal. Appl. 361, 411–419 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shi, H.: Gap solitons in periodic discrete Schrödinger equations with nonlinearity. Acta Appl. Math. 109, 1065–1075 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stepic, M., Kip, D., Hadzievski, L., Maluckov, A.: One-dimensional bright discrete solitons in media with saturable nonlinearity. Phys. Rev. E 69, 066618 (2004)

    Article  Google Scholar 

  44. Struwe, M.: Variational Methods, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  45. Stuart, C.: Guidance properties of nonlinear planar waveguides. Arch. Ration. Mech. Anal. 125, 145–200 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sukhorukov, A.A., Kivshar, Y.S.: Generation and stability of discrete gap solitons. Opt. Lett. 28, 2345–2347 (2003)

    Article  Google Scholar 

  47. Sun, J., Ma, S.: Multiple solutions for discrete periodic nonlinear Schrödinger equations. J. Math. Phys. 56, 022110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tang, X.: Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation. Acta Math. Sin. (Engl. Ser.) 32, 463–473 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tang, X., Chen, S., Lin, X., Yu, J.: Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions. J. Differ. Equ. 268, 4663–4690 (2020)

    Article  MATH  Google Scholar 

  51. Tang, X., Lin, X., Yu, J.: Nontrivial solutions for Schrödinger equation with local super-quadratic conditions. J. Dyn. Differ. Equ. 31, 369–383 (2019)

    Article  MATH  Google Scholar 

  52. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices (Mathematical Surveys and Monographs vol. 72). American Mathematical Society, Providence, RI (2000)

  53. Vinetskii, V.O., Kukhtarev, N.V.: Theory of the conductivity induced by recording holographic gratings in nonmetallic crystals. Sov. Phys. Solid State 16, 2414 (1975)

    Google Scholar 

  54. Yang, M., Chen, W., Ding, Y.: Solutions for discrete periodic Schrödinger equations with spectrum 0. Acta Appl. Math. 110, 1475–1488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang, M., Zhao, F., Ding, Y.: Infinitely many stationary solutions of discrete vector nonlinear Schrödinger equation with symmetry. Appl. Math. Comput. 215, 4230–4238 (2010)

    MathSciNet  MATH  Google Scholar 

  56. Zhou, Z., Yu, J.: On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems. J. Differ. Equ. 249, 1199–1212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhou, Z., Yu, J.: Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity. Acta Math. Sin. (Engl. Ser.) 29, 1809–1822 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhou, Z., Yu, J., Chen, Y.: On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity. Nonlinearity 23, 1727–1740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhou, Z., Yu, J., Chen, Y.: Homoclinic solutions in periodic difference equations with saturable nonlinearity. Sci. China Math. 54, 83–93 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhu, Q., Zhou, Z., Wang, L.: Existence and stability of discrete solitons in nonlinear Schrödinger lattices with hard potentials. Physica D 403, 132326 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the reviewers for their constructive and helpful comments and suggestions. This work was partially supported by the National Natural Science Foundation of China (No. 12001127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Yu.

Ethics declarations

Conflict of interest

The authors claimed no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G., Yu, J. Existence of a Ground-State and Infinitely Many Homoclinic Solutions for a Periodic Discrete System with Sign-Changing Mixed Nonlinearities. J Geom Anal 32, 127 (2022). https://doi.org/10.1007/s12220-022-00866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00866-7

Keywords

Mathematics Subject Classification

Navigation